跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林義昇
研究生(外文):Yi-Sheng Lin
論文名稱:正常人與脊髓損傷病人使用交替式步行輔具及柺杖步行之能量流分析
論文名稱(外文):Mechanical energy flow of gait in one normal subject and one complete spinal cord injured patient using reciprocal gait orthosis walking with crutches: A case study
指導教授:章良渭章良渭引用關係
指導教授(外文):Liang-Wey Chang
口試委員:郭藍遠彭志維鄭智修
口試委員(外文):Lan-Yuen GuoChih-Wei PengChih-Hsiu Cheng
口試日期:2015-02-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:97
中文關鍵詞:交替式步行輔具能量流
外文關鍵詞:reciprocal gait orthosismechanical energy flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
下肢癱瘓者在行動輔具的選擇除了輪椅以外,習用的行動輔具例如RGO也可協助下肢癱瘓者行動,雖然使用RGO可增進下肢癱瘓者身心狀況,然而研究顯示使用RGO步行是一件相當耗能的活動,本文將藉由研究下肢癱瘓受試者使用RGO與正常人使用RGO步行策略之比較來找出下肢癱瘓受試者耗能的主要原因。
本實驗招募一位SCI 下肢癱瘓受試者及五位正常受試者,並為每位受試者量身製作RGO,在充足的練習後每位受試者以自選速度步行五公尺,並在實驗中收取步態運動學及力學資料進行能量流模型分析,其中,能量流分析在步態中又分為三期,分別是雙腳站立期、加速期及減速期; 資料呈現將選取特徵相似性較高者作為代表,正常人能量流資料由五位受試者當中取出一位受試者作為代表,下肢癱瘓病人資料因差異性較大,無法平均每次試驗,固選取其中一次試驗作為代表。
相較於正常人0.55m/s,下肢癱瘓病人步行速度0.06m/s是非常緩慢的, 分析結果顯示正常人使用RGO在雙腳站立期及加速期都有明顯的動位能相互轉換的機制,因此能量可藉由此轉換機制避免耗損。下肢癱瘓者在雙腳站立期傾向將動能及位能同時降低以得取較佳的平衡,並在雙腳站立後期及加速期將身體的動位能同時提升,然而此動作已違反動位能轉換機制原理,能量無法有效轉換。
下肢癱瘓者步行能量是在雙腳站立期後期至加速期由肩關節產生能量提供軀幹位能以利下肢甩盪,並在加速期後期至減速期由摩擦力吸收下肢動能及雙腳著地後由Trunk-Pelvis 關節吸收軀幹位能。
該步行策略能量轉換效率低的主要原因是該下肢癱瘓者缺乏下肢肌肉動力導致代償性步態的產生。在雙腳站立期下肢癱瘓者以軀幹屈曲-伸張動作代償臀中肌無力,然而軀幹屈曲動作將會吸收身體位能; 在Preswing以肩關節代償踝關節將身體位能提升,加速期拐杖持續施力於肩關節,然而肩關節會同時提升身體動能及位能,使能量無法轉換,且加速期肩關節受力方向與行動方向相反,將造成倒單擺運動受到阻礙;在減速期由於膝鎖裝置使膝關節無法活動,該裝置限制下肢癱瘓者降低身體位能,此時期能量無法由位能順利轉為動能,且容易造成拖足的現象。
因此本文建議對於下肢癱瘓者行動輔具設計須考慮步態動位能轉換效率,若能提供外在人工動力將可以大幅減少下肢癱瘓者的代償性動作,具體可嘗試的方法為髖、踝關節外加動力,膝關節感應解鎖裝置等等。

Many benefits are associated with spinal cord injury patients using reciprocating gait orthoses instead of wheel chairs, such as fewer muscle contractures, reduced risk for bone fractures, better peripheral circulation, and less depression. However, high energy cost and a slow walking speed are two factors that limit the usage rate of reciprocating gait orthosis. In previous study, the data shows that SCI group walking with different gait patterns compared with normal subjects, they tend to flex the trunk to motivate the lower limbs into swing phase. The gait pattern might be the reasons why spinal cord injury patients walk inefficiently. Nevertheless, the reasons of high energy cost are still unclear. This article aims to figure out the cause of high energy cost by energy flow analysis.
1 SCI patient and 5 normal subjects were recruited for this study. All subjects practicd how to walk with the reciprocating gait orthosis and crutches before data collection. They walked at a self-selected speed along a 5 meter walkway equipped with an Optotrak system synchronized with AMTI force plates and single axis load-cells on the crutches. The kinetic, kinematic and temporal-spatial, energetic parameters were collected with this system and calculated by inversed dynamics. The energy flow parameters were then calculated from the kinetic and kinematic data. Finally, we discussed the energy flow data and walking strategy between two groups. The representative data showed one normal subject with RGO averaged over 5 trials; And we showed particular one trial without averaging for the SCI subject since the data varied too much from trial to trial. The representative trial shows most of the features found in the total data. The velocity of the SCI subject (0.06m/s) is very slow compared to the velocity of normal subject with RGO( 0.55m/s ), the result shows that normal subject with RGO use the mechanism of inverted pendulum that conserve energy by converting potential energy and kinetic energy to avoid energy consumption in double-limb support and acceleration period. However, the SCI subject reduce both potential energy and kinetic energy to the minimum in mid double-limb support period and rise both kinetic energy and potential energy up in late double-limb support period and acceleration period, thus, the energy can’t be conserved since the strategy contradict to the mechanism of inverted pendulum model.
For SCI subject, power from the shoulder was used to create foot clearance during the preswing and acceleration period. The power would be consumed in deceleration (or late acceleration) period by friction and in double-limb support period by trunk-pelvis joint. The reason why the energy is not conserved but consumed is that the SCI subject adopt compensatory movements such as leaned forward trunk, simultaneously increases in PE and KE due to shoulder power, and a locked knee device that discourages the conversion of PE to KE, energy absorbed by joints or friction; If we can make the RGO equipped with artificial power source on hip or ankle joint and unlocked knee joint at good timing, that would help SCI subject to reduce of compensatory movement and friction.

Contents
口試委員會審定書 .......................................1
致謝................................................... 2
中文摘要............................................... 3
Contents ...............................................5
List of Figures ....................................... 6
Abstract ...............................................10
Chapter 1 Introduction .................................12
1.1 Literature review ..................................12
1.2 Review of Energy flow data of Normal gait...........18
1.3 Objectives and hypotheses ..........................23
Chapter 2 Materials and Methods ........................24
2.1 Subjects ...........................................24
2.2 Experimental Protocol and Equipment Settings........25
2.3 The training process of the SCI subject.............32
2.4 Energy Flow Model ..................................33
Chapter 3 Results ......................................35
3.1 – MMT of the SCI subject, definition of periods and representative time events for 3 periods................35
3.2 Energy flow model of normal subject with RGO........45
3.3 Energy flow model of SCI subject with RGO...........51
3.4 Other Kinetic and kinematic parameters..............63
Chapter 4 Discussion....................................68
Chapter 5 Conclusion ...................................84
References .............................................85
Appendix ...............................................86
A1 Muscle Function Grading
A2 ASIA Impairment Scale(AIS)
A3 Normal Range of Motion
A4 The Averaged Energy flow model of three periods of SCI gait
A5臺大醫院研究倫理委員會臨床試驗受試者同意書

References
[1]Taber, Clarence Wilbur; Venes, Donald. Taber''s cyclopedic medical dictionary. F.A. Davis. 2009 pp. 2173–4
[2]Lin VWH; Cardenas DD; Cutter NC; Frost FS; Hammond MC. Spinal Cord Medicine: Principles and Practice. Demos Medical Publishing; 2002
[3] Mazur JM, Shurtleff D, Menelaus M, Colliver J. Orthopaedic management of high-level spina bifida. Early walking compared with early use of a wheelchair. J Bone Joint Surg Am. 1989;71(1):56–61
[4] Bromley I. Tetraplegia and paraplegia: A guide for physiotherapists.2nd ed. New York (NY): Churchill Livingstone;1981.
[5] McAdam R, Natvig H. Stair climbing and ability to work for paraplegics with complete lesions—A sixteen-year followup. Paraplegia. 1980;18(3):197–203
[6] Kaoru Abe, MS Comparison of Static Balance, Walking Velocity, and Energy Consumption with Knee-Ankle-Foot Orthosis, Walkabout Orthosis, and Reciprocating Gait Orthosis in Thoracic-Level ,Paraplegic Patients , CPO 2006 Volu e 18 ‧ Number 3
[7] Sykes L, Edwards J, Powell ES, Ross ER. The reciprocating gait orthosis: Long-term usage patterns. Arch Phys Med Rehabil. 1995;76(8):779–83.
[8] Bowker. Paraplegic adaptation to assisted-walking: energy expenditure during wheelchair versus orthosis use.,1991
[9] P. M. DAL,L, The functional use of the reciprocal hip mechanism during gait
for paraplegic patients walking in the Louisiana State University reciprocating gait orthosis, Prosthetics and Orthotics International, 1999, 23, 152-162
[10] M Bernardi, I Canale. The efficiency of walking of paraplegic patients using reciprocating gait orthosis, Journal of paraplegia, 1995, 33, 409-415
[11]William Brett Johnson, BE;1–2 Stefania Fatone, PhD, BPO (Hons);1* Steven A. Gard, PhD1–3 Walking mechanics of persons who use reciprocating gait orthoses, Journal of Rehabilitation Research & Development, 2009, Volume 46, Number 3,,Pages 435–446
86
[12] R.R. Neptune, F.E. Zajac, S.A. Kaut, Muscle mechanical work requirements during nor al alking: the energetic cost of raising the body’s center-of-mass is significantJournal of Biomechanics 37 (2004) 817–825
[13] . C. Detrembleur, A. van den Hecke b, F. Dierick (2000) Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait, Gait and Posture 12 (2000) 243–250
[14] Winter DA, D.G.E.Robertson. Joint torque and energy patterns in normal gait. Biol. Cybernetics 1978;29:137-142.
[15]Marjan Meinders, Andrew Gittar(1998)the role of plantarflexor during walking, Scand J Rehab Med 30,39-46
[16]H.B. Chen,Walking Energy Flow in Terminal Stance: Is Ankle Push-Off the Major Driving Power? , 2012
[17]K.H. Chen ,Mechanical Energy Flow and the Strategy of Walking with Backpack, NTU library ,2012
[18] C. C. Chuang, Mechanical energy cost and walking speed in elders, NTU library,2012
[19]J. Maxwell Donelan, Rodger Kram and Arthur D. Kuo,* Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, The Journal of Experimental Biology 205, 2002, 3717–3727
[20] Peter R. Culmer , Peter C. Brooks , An Instrumented Walking Aid to Assess
and Retrain Gait , 1083-4435,2012, IEEE
[21] Brooke A. Slavens , Motion Analysis of the Upper Extremities During Lofstrand Crutch-Assisted Gait in Children with Orthopaedic Disabilities, J Exp Clin Med 2011;3(5):218~227
[22] Brooke A. Slavens , Upper extremity inverse dynamics model for crutch-assisted gait assessment, Journal of Biomechanics 43 (2010) 2026–2031
[23]Brooke A. Slavens , Upper extremity dynamics during Lofstrand crutch-assisted gait in children with myelomeningocele , Gait & Posture 30 (2009) 511–517

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文