跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳虹蓁
研究生(外文):Hung-Jhen Chen
論文名稱:環境溫度透過神經胜肽調控線蟲壽命的機制
論文名稱(外文):Regulation of Longevity Response to Temperature by Neuropeptide Signaling in C. elegans
指導教授:潘俊良潘俊良引用關係
指導教授(外文):Chun-Liang Pan
口試委員:吳益群許翱麟
口試委員(外文):Yi-Chun WuAo-Lin Hsu
口試日期:2015-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:123
中文關鍵詞:線蟲環境溫度老化神經胜肽
外文關鍵詞:C. elegansenvironmental temperaturesagingneuropeptides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溫度是已知影響壽命的重要環境因素之一。之前的研究指出,在線蟲C. elegans,由溫感神經元AFD及中間神經元AIY所組成的溫感神經迴路調控了線蟲在高溫環境下的壽命,但是由溫感神經迴路所傳遞的神經訊息如何調控線蟲的整體壽命仍然未知。我們發現CREB的同源轉錄因子crh-1及神經胜肽flp-6在高溫下對於線蟲維持正常壽命是必要的。在溫感神經元AFD中,溫度的上升會透過磷酸化轉化為crh-1的活性,活化的CRH-1會進而提高flp-6的表現量。我們認為flp-6可能是藉由直接作用在中間神經元AIY上來調控壽命。我們也發現crh-1不是透過熱休克反應,而是藉由胰島素訊息路徑來調控壽命。我們發現crh-1、flp-6及daf-16皆作用在相同的路徑上,從比較野生型及flp-6突變的線蟲基因表現,我們發現了幾個參與在胰島素訊息路徑中的基因,其表現量在flp-6突變株中有明顯的上升,例如類胰島素胜肽ins-7。ins-7在腸道的表現量會受到crh-1及flp-6抑制,去除ins-7可延長flp-6突變線蟲在高溫下的短壽命。總結以上結果,我們發現溫感神經迴路感受到環境溫度的上升後,藉由溫感神經迴路所傳遞的神經胜肽flp-6訊息抑制了線蟲體內的類胰島素胜肽ins-7的活性,來維持線蟲在高溫下的壽命。

Temperature is an important environmental cue that influences longevity. In the nematode Caenorhabditis elegans, the thermosensory neuronal circuit, including the thermosensory neuron AFD and the interneuron AIY, is required for normal life span at warm temperatures, but how thermosensory perception control temperature-specific longevity response remains elusive. We found that CRH-1, the C. elegans cyclic AMP response element binding protein, and the FMRFamide-like neuropeptide FLP-6 acted in the AFD, and that both crh-1 and flp-6 were necessary and sufficient for longevity control in a temperature-dependent manner, with flp-6 acting downstream of crh-1. crh-1 transcriptionally upregulated flp-6. In a CRE- (cyclic AMP response element) and temperature-dependent manner. Our data suggested that flp-6 may target the AIY in longevity regulation. The effects of crh-1 on longevity were independent of the heat shock response pathway, but may engage insulin signaling, as genetic analysis of longevity phenotypes in crh-1, flp-6 and daf-16 mutants suggested that they functioned in a common pathway. This was supported by our profiling of the flp-6 mutant transcriptome compared to that of the wild type, which identified several insulin pathway genes being upregulated in the flp-6 mutant, including the insulin-like peptide (ILP) ins-7. crh-1 and flp-6 negatively regulated ins-7 expression in the intestine, and the ins-7 mutation completely suppressed longevity deficits of the flp-6 mutant at warm temperature. Together these experiments identify an flp-6/FLP-to-ins-7/ILP neuropeptide signaling circuit as an output from the thermosensory neuron for longevity control in response to a rise in the ambient temperature.

ACKNOWLEDGEMENT i
中文摘要 iii
ABSTRACT iv
CONTENTS v
Chapter 1 INTRODUCTION 1
1.1 Thermosensation and Life Span Regulation 1
1.2 CRH-1/CREB and Thermosensory Genes Regulates Longevity Response to Temperature in C. elegans 1
1.3 A CREB-Dependent Neuropeptide Signaling in Longevity Regulation 3
1.4 Steroid Signaling Regulate Temperature-Dependent Longevity 3
1.5 Crosstalk between Neuropeptides in Longevity Regulation 4
Chapter 2 MATERIALS and METHODS 7
2.1 C. elegans Strains and Genetics 7
2.2 Molecular Biology and Germline Transformation 8
2.3 Life Span Assay 8
2.4 Feeding RNA Interference 9
2.5 Heat Shock Stress Test 9
2.6 Fluorescence Microscopy and Quantification of Fluorescence Signal 10
2.7 Single Molecule RNA Fluorescence in situ Hydridization (smFISH) 10
2.8 RNA Isolation 11
2.9 Genome-wide mRNA Library Preparation and Sequencing (Transcriptome) Analysis 11
2.10 Reverse Transcription 12
2.11 Quantitative Real-Time PCR 13
Chapter 3 RESULTS 15
3.1 crh-1 Functions in AFD and Intestine for Normal Life Span Maintenance 15
3.2 crh-1 Regulates Longevity Response to Temperature Independently of Heat Shock Pathways 16
3.3 The FMRFamide Neuropeptide FLP-6 Mediates the Effects of crh-1 on Temperature-Dependent Longevity 17
3.4 flp-6 is a Transcriptional Target of crh-1 in the AFD Neuron 18
3.5 crh-1 and flp-6 Regulate Longevity Response to Temperature through the AIY Interneuron 19
3.6 crh-1 Regulats Longevity through the DAF-9/Sterol Hormone Signaling Pathway 20
3.7 flp-6 Promotes Temperature-Dependent Longevity Response by Repressing Multiple Insulin Signaling Genes 21
3.8 flp-6 Represses Intestinal ins-7 Expression 23
3.9 crh-1 and flp-6 Promote Longevity by Engaging DAF-16/FoxO and Insulin Signaling 24
Chapter 4 DISCUSSION 27
4.1 Thermosensory Perception Influences Life Span by a Secreted Cue 27
4.2 FLP-6 Neuropeptide Engages Insulin Signaling to Regulate Temperature-Dependent Longevity 28
4.3 Does CRH-1 Positively or Negatively Regulate Longevity? 29
Chapter 5 FIGURES 31
Chapter 6 SUPPLEMENTARY TABLES 96
6.1 Statistics of Life Span 96
6.2 Differentially Expressed Genes in the flp-6 mutant 110
6.3 Gene Ontology Analysis of the Differentially Expressed Genes in the flp-6 Mutant 116
Chapter 7 REFERENCE 118


Alcedo, J., and Kenyon, C. (2004). Regulation of C. elegans longevity by specific
gustatory and olfactory neurons. Neuron 41, 45-55.

Apfeld, J., and Kenyon, C. (1999). Regulation of lifespan by sensory perception in
Caenorhabditis elegans. Nature 402, 804-809.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.

Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., and Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92-96.

Calixto, A., Chelur, D., Topalidou, I., Chen, X., and Chalfie, M. (2010). Enhanced neuronal RNAi in C. elegans using SID-1. Nature Methods 7(7), 554-559.

Chen, Y.-C., Chen, H.-J., Tseng, W.-C., Hsu, J.-M., Chen, C.-H., and Pan, C.-L.. crh-1/CREB-dependent flp-6 neuropeptide signaling regulates longevity response to temperature in C. elegans. Submitted.

Chen, Z., Hendricks, M., Cornils, A., Maier, W., Alcedo, J., and Zhang, Y. (2013).
Two insulin-like peptides antagonistically regulate aversive olfactory learning in C.
elegans. Neuron 77, 572-585.
Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M.C., Lucero, J., Brownell, S., Fabre, V., Huitron-Resendiz, S., Henriksen, S., Zorrilla, E.P., et al. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825-828.

Hedgecock, E.M., and Russell, R.L. (1975). Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 72, 4061-4065.

Honjoh, S., Yamamoto, T., Uno, M., and Nishida, E. (2009). Signaling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457, 726-730.

Kim, K., and Li, C. (2004). Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J. Comp. Neurol. 475, 540-550.

Kimura, Y., Corcoran, E.E., Eto, K., Gengyo-Ando, K., Muramatsu, M.A., Kobayashi, R., Freedman, J.H., Mitani, S., Hagiwara, M., Means, A.R., et al. (2002). A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep. 3, 962-966.

Klass, M.R. (1977). Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413-29.


Lakhina, V., Arey, R.N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W., Xu, D., and Murphy, C.T. (2015). Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 85, 330-345.

Lee, S.J., and Kenyon, C. (2009). Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr. Biol. 19, 715-722.

Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the lifespan of Caenorhabditis elegans by down-regulation aquaporin gene expression. Cell Metab. 10(5), 379-391.

Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S.D. (2007). Regulation of Drosophila life span by olfaction and food-derived odors. Science 315, 1133-1137.

Libina, N., Berman J.R., and Kenyon, C. (2003). Tissue-Specific Activities of C. elegans DAF-16 in the Regulation of Lifespan. Cell 115, 489-502.

Loeb, J., and Northrop, J.H. (1916). Is there a temperature coefficient for the duration of life? Proc. Natl. Acad. Sci. USA 2, 456-457.



Mahanti, P., Bose, N., Bethke, A., Judkins, J. C., Wollam, J., Dumas, K. J. Zimmerman, A. M., Campbell, S. L., Hu, P. J., Antebi, A. and Schroeder, F. C. (2013). Comparative Metabolomics Reveals Endogenous Ligands of DAF-12, a Nuclear Hormone Receptor, Regulating C. elegans Development and Lifespan. Cell Metab. 19, 73–83.

Mair, W., Morantte, I., Rodrigues, A.P., Manning, G., Montminy, M., Shaw, R.J., and Dillin, A. (2011). Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404-408.

Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959-3970.

Mori, I., and Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344-348.

Murphy, C.T., Lee, S.J., and Kenyon, C. (2007). Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 19046-19050.

Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.
Nishida, Y., Sugi, T., Nonomura, M., and Mori, I. (2011). Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis. EMBO Rep. 12, 855-862.

Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y., and Mori, I. (2011). Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. EMBO J. 30, 1376-1388.

Ohta, A., and Kuhara, A. (2013). Molecular mechanism for trimetric G protein-coupled thermosensation and synaptic regulation in the temperature response circuit of Caenorhabditis elegans. Neurosci. Res. 76, 119-124.

Prahlad, V., Cornelius, T., and Morimoto, R.I. (2008). Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811-814.

Taylor, R.C., and Dillin, A. (2013). XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435-1447.

White, J.G., Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1-340.


Yoneda, T., Benedetti, C., Urano, F., Clark, S.G., Harding, H.P., and Ron, D. (2004). Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117, 4055-4066.

Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, H., Li, B., Liu, G., and Cai, D. (2013). Hypothalamic programming of systemic ageing involving IKK-

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文