|
1.Boyle P, Maisonneuve P, Autier P. Update on cancer control in women. Int J Gynaecol Obstet 2000; 70: 263-303. 2.Gonzalez DP, Lopez AG, Pollan M, Ruiz M. Time trends in ovarian cancer mortality in Europe (1955-1993): effect of age, birth cohort and period of death. Eur J Cancer 2000; 36: 1816-24. 3.Jemal, A, Thomas, A, Murray, T, & Thun, M. Cancer statistics, 2002.CA: a cancer journal for clinicians 2000; 52(1): 23-47. 4.Ozols, RF. Management of advanced ovarian cancer consensus summary. Advanced Ovarian Cancer Consensus Faculty. Semin Oncol 2000; 27: 47-9. 5.Holschneider CH, Berek JS. Ovarian cancer:epidemiology, biology, and prognosticfactors. Semin Surg Oncol 2000; 19: 3-10. 6.Rubin SC, Randall TC, Armstrong KA. Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol 1999; 93: 21-4. 7.Jacobs I, Bast RC Jr. The CA 125 tumour-associated antigen: a review of the literature. Hum Reprod 1989; 4: 1-12. 8.Schumacher K, Haensch W, Roefzaad C, et al. Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 2001; 61: 3932-6. 9.Marrogi AJ, Munshi A, Merogi AJ, et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 1997; 74: 492-501. 10.Vesalainen S, Lipponen P, Talja M, Syrjanen K. Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 1994; 30A: 1797-803. 11.Halpern AC, Schuchter LM. Prognostic models in melanoma. Semin Oncol 1997; 24: Suppl 4:S2-S7. 12.Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998; 58: 3491-4. 13.Matthew V, Glenn D. Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews Cancer 2012;12:237-251. 14.Couzin-Frankel J. Cancer immunotherapy. Science 2013;342(6165): 1432-1433. 15.Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 2011; 331: 1565-70. 16.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-74. 17.Rosenberg SA, Restifo NP, Yang JC, Morgan RA, & Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer 2008;8(4): 299-308. 18.Zhang L, Conejo JR, Katsaros D, Gimotty PA, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New England Journal of Medicine 2003; 348(3): 203-13. 19.Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 18538-43 20.Morishige T, Yoshioka Y, Inakura H, et al. LIGHT protein suppresses tumor growth by augmentation of immune response. Immunology letters, 2009; 127(1): 33-38. 21.Paulos CM, Carl HJ. Putting the brakes on BTLA in T cell–mediated cancer immunotherapy. J Clin invest 2010; 120(1): 76-86. 22.Sobin LH, Fleming ID. TNM Classification of Malignant Tumors, 5th. Cancer 1997; 80(9): 1803-04. 23.Shepherd J H. Revised FIGO staging for gynecological cancer. British Journal of Obstetrics and Gynecology 1989; 96(8): 889-892. 24.Malkasian Jr GD, Melton III LJ, O''Brien PC, Greene MH. Prognostic significance of histologic classification and grading of epithelial malignancies of the ovary. AmJ Obstet Gynecol 1984; 149: 274–84. 25.Chen YL, Cheng WF, Chang MC, Lin HW, et al. Interferon-gamma in ascites could be a predictive biomarker of outcome in ovarian carcinoma. Gynecol Oncol 2013; 131(1): 63-8. 26.Raspollini MR, Castiglione F, Rossi DD, et al. Tumor-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol 2005; 16: 590-6. 27.Tomšová M, Melichar B, Sedláková I, Šteiner I. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 2008; 108(2): 415-20. 28.Baecher AC, Anderson DE. Regulatory cells and human cancer. Semin Cancer Biol 2006; 16: 98-105. 29.Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, et al. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. Journal of virology 1997; 71(8): 6083-6093. 30.Sedy JR, Gavrieliet MP, Hurchla MA, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature immunology 2005; 6(1) : 90-98. 31.Duhen T, Pasero C, Mallet F, Barbarat B, Olive D, Costello RT, et al. LIGHT costimulates CD40 triggering and induces immunoglobulin secretion; a novel key partner in T cell‐dependent B cell terminal differentiation. European journal of immunology 2004; 34(12): 3534-3541. 32.Ware CF. Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunological reviews 2008; 223(1): 186-201. 33.Bodmer JL, Pascal S, and Jürg T. The molecular architecture of the TNF superfamily. Trends in biochemical sciences 2002; 27.1: 19-26. 34.Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin invest 2010; 120(1): 157-67. 35.Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, et al. LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest. 1998; 102(6): 1142-51. 36.Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM–BTLA. Trends in immunology 2005; 26(6): 292-294. 37.Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, Hymowitz SG. Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem 2005; 280: 39553–61. 38.Cai G, Freeman G J. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T‐cell activation. Immunological reviews 2009; 229(1): 244-258. 39.Banner DW, D''Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNFβ complex: implications for TNF receptor activation. Cell 1993; 73.3: 431-445. 40.Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature immunology 2003; 4.7: 670-679. 41.Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B & Freeman G J. CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nature immunology 2008; 9(2): 176-185. 42.Maiza H, Leca G, Mansur IG, Schiavon V, Boumsell L, Bensussan A. A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med 1993; 178: 1121–26. 43.Anumanthan A, Bensussan A, Boumsell L, Christ AD et al. Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol 1998;161:2780–2790. 44.Morel Y, de Colella JMS, Harrop J, Deen KC, Holmes SD, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol. 2000;165(8):4397–4404.
|