跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雅云
研究生(外文):Ya-Yun Cheng
論文名稱:黃光區對於視覺敏銳度、認知記憶力以及疲勞舒適程度的影響
論文名稱(外文):Effects of Lighting Environment on Visual Sensitivity, Cognition Memory Performance, Fatigue and Comfort in Lithography Area
指導教授:黃耀輝黃耀輝引用關係
口試委員:毛義方紀佳芬郭育良
口試日期:2015-01-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:91
中文關鍵詞:黃光區照明視覺敏銳度視覺認知記憶力視覺疲勞與舒適度
外文關鍵詞:lithography arealightingvisual sensitivityvisual cognitionvisual fatigue and comfort
相關次數:
  • 被引用被引用:1
  • 點閱點閱:975
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體與LED產業的發展,採用黃光照明的廠區日益增多,暴露於黃光的作業人員也越來越多。在黃光區作業主要是進行光罩微影製程,為了保護光阻材質,環境中凡波長低於500 nm的光波都必須被阻絕。所以光罩微影製程區的照明設備通常採用黃色光源,以致人眼不易辨別物體真實的顏色,並可能衍生出對於視覺表現的影響。
為了解黃光區作業環境光源的特性以及作業人員的光暴露實態,並釐清作業環境光源與作業人員視覺表現之間的關連性,本研究在一家固態照明產品製造公司工作現場進行實地研究。針對12名黃光區作業人員(暴露組)與12名鄰近之白光區的作業人員(對照組)作視覺表現測驗。作業環境照明光源係使用光譜儀量測光照度、相對色溫與演色性等;而作業人員則進行視覺敏銳度、視覺認知記憶力的測驗與視覺疲勞舒適度的評估。
研究結果顯示,黃光區的環境照明光源主要為500 nm以上波長的光波,其平均光照度為292 lux與相對色溫平均為2223 K,相較於白光區的環境照明的光照度與相對色溫均低許多。黃光區與白光區作業人員的色棋測驗平均錯誤分數分別為91.5與26.8分,達到統計上顯著差異(p<0.0001)。此外,所有的視覺敏銳度與視覺認知記憶力測驗結果均顯示黃光區作業人員的視覺表現較白光區作業人員差。而且黃光區作業人員自覺的視覺疲勞程度較高,也比較認為其環境照明的舒適度不佳。故本研究建議提高黃光區環境照明光源之光照度,並定期將黃光區作業人員輪調至其他作業區。
本研究在不干擾生產線工作的原則下,以作業人員實際的工作環境進行實地研究。雖然本研究中黃光區與白光作業人員在視覺表現上的差異暫無法歸因於特定一項光學參數,但其暴露於特殊黃色光源的總時間,已經比一般實驗室研究的模擬暴露時間更長久,有助於觀察長時間暴露於特殊黃色光源下對於視覺表現的影響狀況。藉由本研究成果,希望能促使工業界對黃光區環境照明光源與作業人員作適當的實務管理,並能依此研究成果進行必要的工作區輪調,更進一步保障職場作業人員的健康權益。

In the past decades, the semiconductor and the light emitting diode (LED) industries grew rapidly in Taiwan and the number of fab with lithography area kept increasing. Thus, workers exposed to yellow light at work increased as well. In order to protect photo resistor, light of wavelength less than 500 nm would be blocked using yellow fluorescent lightening, which might modify workers’ perception of color as well as visual performance.
This study aimed to characterize on-site lighting environment in both lithography area and its adjacent area, and assess the workers’ exposure to the particular lighting at work in a wafer fab. To clarify the possible association between lighting environment and visual performance of workers, this study was carried out in the lithography area and its adjacent area of a LED fab for comparison. There were 24 workers recruited in this study, half of them working in lithography area (exposed group), and the others working in the adjacent area (control group). Spectrometer was applied to measure the lighting condition in both areas. Visual sensitivity test, cognition memory performance test, fatigue and comfort assessment were applied to assess the workers’ visual performance.
Results of lighting measurement at work places demonstrated that not only light with wavelength less than 500 nm were blocked in lithography area, but also the illumination (292 lux) and correlated color temperature (2223 K) in this working area were much lower as compared to its adjacent area. Moreover, all the visual tests’ results showed poorer visual performance for workers in lithography area as compared to those workers in the adjacent area. The error
scores of color perception test were 91.5 points and 26.8 points for exposed group and control group, respectively (p<0.0001). Besides, the workers in lithography area were prone to get visual fatigue and feel uncomfortable under yellow lighting. Results of this study suggested that the illumination of lithography area might need to be increased and the workers in lithography area might need to be routinely rotated in order to prevent adverse effect on visual performance.
However, difference in visual performance between study groups was hard to be attributed to any lighting related parameter since none of them could be manipulated in this field study for research purpose. In future, a long-term follow-up study with larger sample size is warranted to clarify possible adverse effects resulting from working in lithography area by controlling confounding factors. It’s expected that our findings would urge the industry to improve and practice suitable management in lithography area for working environment and condition. In addition, these findings could be used as reference for the working area rotation plan.

口試委員會審訂書 i
致謝 ii
摘要 iii
ABSTRACT v
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 半導體產業 3
2.2 發光二極體(Light Emitting Diode, LED)產業 4
2.3 黃光區-光罩微影製程 5
2.4 視覺 7
2.4.1 視覺原理 7
2.4.2 視覺敏銳度 8
2.4.3 視覺認知記憶力 9
2.4.4 視覺疲勞 10
2.5 光暴露與健康效應 10
2.5.1 光波長 11
2.5.2 光照度 11
2.5.3 相對色溫(Correlated Color Temperature) 12
2.5.4 演色指數(Color Rendering Index, CRI) 13
2.5.5 純度 14
2.6 黃光區與健康效應 14
2.6.1 派工與輪班 14
2.6.2 生殖危害 15
2.6.3 視覺 15
第三章 材料與方法 17
3.1 研究地點 17
3.1.1 工作區與測驗區的空間配置 17
3.1.2燈具配置 18
3.2 研究對象 18
3.3問卷資料收集 19
3.4光源特性資料 19
3.5視覺敏銳度評估 19
3.5.1視銳度(Visual Acuity) 20
3.5.2對比敏銳度(Contrast Sensitivity) 20
3.6視覺認知記憶表現評估 21
3.6.1色棋測驗 22
3.6.2視覺追蹤測驗(Visual Pursuit Test) 23
3.7視覺疲勞舒適程度評估 25
3.7.1閃光融合閾值 25
3.7.2視覺疲勞程度問卷 26
3.7.3視覺舒適度問卷 26
3.8研究架構與研究流程圖 27
3.9統計分析 29
第四章 研究結果 31
4.1 受試者基本資料 31
4.2 作業環境光源資料 32
4.3 視覺敏銳度結果探討 33
4.3.1 視銳度 33
4.3.2 對比敏銳度 33
4.4 視覺認知記憶力結果探討 34
4.4.1 色棋測驗 34
4.4.2 視覺追蹤測驗 35
4.5 視覺疲勞舒適程度結果探討 36
4.5.1 閃光融合閾值 36
4.5.2 主觀疲勞度問卷 36
4.5.3 主觀舒適度問卷 37
4.6 相關性分析 39
4.7廣義線性迴歸分析 39
4.7.1 環境照明光源與視銳度的廣義線性迴歸分析 40
4.7.2 環境照明光源與色棋測驗錯誤分數的廣義線性迴歸分析 40
第五章 討論 63
5.1 視覺表現測驗方法之探討 63
5.1.1 視覺敏銳度測驗方法 63
5.1.2 視覺認知記憶力測驗方法 64
5.1.3 視覺疲勞與舒適程度測驗方法 66
5.2 環境照明光源與視覺測驗結果探討 68
5.2.1 環境照明光源特性之結果探討 68
5.2.2 視覺敏銳度之結果探討 69
5.2.3 視覺認知記憶力之結果探討 70
5.2.4 視覺疲勞與舒適程度之結果探討 72
5.2.5 光適應之探討 74
5.2.6 干擾因子(Confounder)之探討 74
5.3 本研究之優勢與限制 75
5.3.1 研究優勢 75
5.3.2 研究限制 77
第六章 結論與建議 79
參考文獻 81
附錄一 基本資料問卷 87
附錄二 視覺疲勞問卷 89
附錄三 視覺舒適度問卷 90

Akashi Y, Boyce P. A field study of illuminance reduction. Energy and Buildings 2006;38(6):588-599.
Alhola P, Polo-Kantola P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatric Disease and Treatment 2007;3(5):553.
Ao M, Chen X, Huang C, Li X, Hou Z, Chen X, Zhang C, Wang W. Color discrimination by patients with different types of light-filtering intraocular lenses. Journal of Cataract & Refractive Surgery 2010;36(3):389-395.
Badia P, Myers B, Boecker M, Culpepper J, Harsh J. Bright light effects on body temperature, alertness, EEG and behavior. Physiology & Behavior 1991;50(3):583-588.
Baron RA. Environmentally induced positive affect: Its impact on self‐efficacy, task performance, negotiation, and conflict. Journal of Applied Social Psychology 1990;20(5):368-384.
Baron RA, Thomley J. A whiff of reality positive affect as a potential mediator of the effects of pleasant fragrances on task performance and helping. Environment and Behavior 1994;26(6):766-784.
Berman S, Jewett D, Fein G, Saika G, Ashford F. Photopic luminance does not always predict perceived room brightness. Lighting Research and Technology 1990;22(1):37-41.
Boray PF, Gifford R, Rosenblood L. Effects of warm white, cool white and full-spectrum fluorescent lighting on simple cognitive performance, mood and ratings of others. Journal of Environmental Psychology 1989;9(4):297-307.
Boyce PR, Simons RH. Hue discrimination and light sources. Lighting Research and Technology 1977;9(3):125-140.
Boyle J, Danjou P, Alexander R, Calder N, Gargano C, Agrawal N, Fu I, McCrea JB, Murphy MG. Tolerability, pharmacokinetics and night‐time effects on postural sway and critical flicker fusion of gaboxadol and zolpidem in elderly subjects. British Journal of Clinical Pharmacology 2009;67(2):180-190.
Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. The Journal of Neuroscience 2001;21(16):6405-6412.
Cajochen C, Krauchi K, Danilenko KV, Wirz‐Justice A. Evening administration of melatonin and bright light: interactions on the EEG during sleep and wakefulness. Journal of Sleep Research 1998;7(3):145-157.
Cajochen C, Frey S, Anders D, Spati J, Bues M, Pross A, Mager R, Wirz-Justice A, Stefani O. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology 2011;110(5):1432-1438.
Campbell SS, Dawson D. Enhancement of nighttime alertness and performance with bright ambient light. Physiology & Behavior 1990;48(2):317-320.
Case-Smith J, O''Brien JC. Occupational therapy for children. Elsevier Health Sciences 2013.
Chi CF, Lin FT. A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society 1998;40(4):577-590.
Courret G. Systmes anidoliques d’clairage naturel. Swiss Federal Institute of Technology in Lausanne, Ph.D. thesis 1999.
Cruickshanks KJ, Klein B, Klein R. Ultraviolet light exposure and lens opacities: the Beaver Dam Eye Study. American Journal of Public Health 1992;82(12):1658-1662.
Do MTH, Yau KW. Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences 2013;110(18):7470-7475.
Eklund NH, Boyce PR. The development of a reliable, valid, and simple office lighting survey. Journal of the Illuminating Engineering Society 1996;25(2):25-40.
Eperjesi F. Effects of yellow filters on visual acuity, contrast sensitivity and reading under conditions of forward light scatter. Graefe''s Archive for Clinical and Experimental Ophthalmology 2011;249(5):709-714.
Erikson C, Kuller R, editors. Non-visual effects of office lighting. CIE 20th Session; 1983;1:D002:1-4.
Folkard S, Lombardi DA. Modeling the impact of the components of long work hours on injuries and “accidents”. American Journal of Industrial Medicine 2006;49(11):953-963.
Gouras P. Color vision. Principles of Neural Science 1991;3:467-479.
Goussard Y, Martin B, Stark L. A new quantitative indicator of visual fatigue. IEEE Transactions on Biomedical Engineering 1987(1):23-29.
Hawes BK, Brunye TT, Mahoney CR, Sullivan JM, Aall CD. Effects of four workplace lighting technologies on perception, cognition and affective state. International Journal of Industrial Ergonomics 2012;42(1):122-128.
Heuer H, Hollendiek G, Kroger H, Romer T. Rest position of the eyes and its effect on viewing distance and visual fatigue in computer display work. Zeitschrift fur experimentelle und angewandte Psychologie 1988;36(4):538-566.
Hoffmann G, Gufler V, Griesmacher A, Bartenbach C, Canazei M, Staggl S, Schobersberger W. Effects of variable lighting intensities and colour temperatures on sulphatoxymelatonin and subjective mood in an experimental office workplace. Applied Ergonomics 2008;39(6):719-728.
Horie Y. A study on the evaluation of sample workload by a thermal video system. Megaw Eds, Towards human work: solutions to problem in occupational health and safety, Taylor & Francis, London 1991:251-252.
Hygge S, Knez I. Effects of noise, heat and indoor lighting on cognitive performance and self-reported affect. Journal of Environmental Psychology 2001;21(3):291-299.
Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D. Critical flicker frequency for quantification of low‐grade hepatic encephalopathy. Hepatology 2002;35(2):357-366.
Knez I. Effects of indoor lighting on mood and cognition. Journal of Environmental Psychology 1995;15(1):39-51.
Knoblauch K, Saunders F, Kusuda M, Hynes R, Podgor M, Higgins KE, De Monasterio FM. Age and illuminance effects in the Farnsworth-Munsell 100-hue test. Applied Optics 1987;26(8):1441-1448.
Kyriacou CP, Hastings MH. Circadian clocks: genes, sleep, and cognition. Trends in Cognitive Sciences 2010;14(6):259-267.
Lauridsen MM, Jepsen P, Vilstrup H. Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy. A comparative study of 154 patients with liver disease. Metabolic Brain Disease 2011;26(2):135-139.
Lee DS, Ko YH, Shen I, Chao CY. Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. Displays 2011;32(1):1-7.
Lieberman LM. Visual perception versus visual function. Journal of Learning Disabilities 1984.
Linhart F, Scartezzini JL. Evening office lighting–visual comfort vs. energy efficiency vs. performance? Building and Environment 2011;46(5):981-989.
Lo JC, Groeger JA, Santhi N, Arbon EL, Lazar AS, Hasan S, Von Schantz M, Archer SN, Dijk DJ. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One 2012;7(9):e45987.
Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 2003;88(9):4502-4505.
Luo D, Kefalov V, Yau K. Phototransduction in retinal rods and cones. The senses: a comprehensive reference 2008.
Meesters Y, Dekker V, Schlangen LJ, Bos EH, Ruiter MJ. Low-intensity blue-enriched white light (750 lux) and standard bright light (10000 lux) are equally effective in treating SAD. A randomized controlled study. BMC Psychiatry 2011;11(1):17.
Megaw E. Factors affecting visual inspection accuracy. Applied Ergonomics 1979;10(1):27-32.
Mitsuhashi T. Evaluation of stereoscopic picture quality with CFF. Ergonomics 1996;39(11):1344-1356.
Niepel G, Bibani RH, Vilisaar J, Langley RW, Bradshaw CM, Szabadi E, Constantinescu CS. Association of a deficit of arousal with fatigue in multiple sclerosis: effect of modafinil. Neuropharmacology 2013;64:380-388.
Ramasoot T, Fotios S. Lighting for the classrooms of the future. Electronic classrooms: A new challenge for school lighting guidance. BalkanLight. 2008;21.
Scheer FA, Shea TJ, Hilton MF, Shea SA. An endogenous circadian rhythm in sleep inertia results in greatest cognitive impairment upon awakening during the biological night. Journal of Biological Rhythms 2008;23(4):353-361.
Sharma P, Sharma BC, Sarin SK. Critical flicker frequency for diagnosis and assessment of recovery from minimal hepatic encephalopathy in patients with cirrhosis. Hepatobiliary Pancreat Dis Int 2010;9(1):27-32.
Solan HA, Ciner EB. Visual perception and learning: Issues and answers. Journal of the American Optometric Association 1989.
Su DY, Liu CC, Chiang CM, Wang W. Analysis of the long-term effect of office lighting environment on human responses. World Academy of Science, Engineering and Technology 2012;67:332-339.
Takeyama H, Itani T, Tachi N, Sakamura O, Murata K, Inoue T, Takanishi T, Suzumura H, Niwa S. Effects of a modified ambulance night shift system on fatigue and physiological function among ambulance paramedics. Journal of Occupational Health 2009(0):0903300067.
Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. The Journal of Physiology 2001;535(1):261-267.
Van Bommel W, Van den Beld G. Lighting for work: a review of visual and biological effects. Lighting Research and Technology 2004;36(4):255-266.
Van Hoof J, Schoutens A, Aarts M. High colour temperature lighting for institutionalised older people with dementia. Building and Environment 2009;44(9):1959-1969.
Vandewalle G, Gais S, Schabus M, Balteau E, Carrier J, Darsaud A, Sterpenich V, Albouy G, Dijk DJ, Maquet P. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cerebral Cortex 2007;17(12):2788-2795.
Veitch JA, Gifford R, Hine DW. Demand characteristics and full spectrum lighting effects on performance and mood. Journal of Environmental Psychology 1991;11(1):87-95.
Wohlfarth H, Gates K. The effects of color-psychodynamic environmental color and lighting modification of elementary schools on blood pressure and mood: A controlled study. International Journal of Biosocial Research 1985;7:9-16.
Wong KY, Dunn FA, Berson DM. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 2005;48(6):1001-1010.
Wright JRK, Badia P, Myers B, Plenzler S. Combination of bright light and caffeine as a countermeasure for impaired alertness and performance during extended sleep deprivation. Journal of Sleep Research 1997;6(1):26-35.
Yoshitake H. Relations between the symptoms and the feeling of fatigue. Ergonomics 1971;14(1):175-186.
Knutsson A. Health disorders of shift workers. Occupational Medicine 2003;53(2):103-108.
王明郎:投資者與股票族必讀—認識台灣半導體產業。台灣綜合展望 2003;7:73-93。
林彥輝、羅友鴻、葉文裕、游志雲:黃光環境暴露色彩辨識探討。勞工安全衛生研究季刊 2003;11:67-75。
郭俊男:遺傳演算法為基的滾動式時窗排程法求解動態黃光區派工問題。國立臺灣大學工業工程學研究所碩士論文 2008。
曾秀芬:半導體業黃光區作業人員視覺疲勞之研究。中國文化大學勞工研究所碩士論文 2001。
陳志勇、李開偉、朱振群:半導體製造業重複性工作傷害之現場評估與改善。行政院勞工委員會勞工安全研究所1996;IOSH85-H326。
吳姮憓:照明光顏色、電腦螢幕文字、背景顏色與文字複雜度對中文字辨識與視覺疲勞之影響。國立交通大學工業工程與管理系碩士論文 1998。
謝功毅:半導體員工生殖健康及癌症風險之探討。國立臺灣大學職業醫學與工業衛生研究所博士論文 2005。
李厚強:人工光源之照度及色溫對視覺感知影響與照明方式調查研究以住宅客廳為例。大同大學工業設計研究所碩士論文 2002。
戴瑞德:晶圓製造廠系統化設施規劃。中原大學工業工程學系碩士論文 2002。
黃玉元:半導體產業總體環境分析。資產管理期刊 2010;11:46-57。
李聯雄、張富貴:LED照明光電產業製程危害之調查研究。行政院勞工委員會勞工安全衛生研究所 2012;IOSH100-A310。
施敏、梅凱瑞:半導體製程概論。林鴻志翻譯,初版,新竹:國立交通大學出版社 2008。
王銘顯:道路交通標誌的視覺反應(下)。工業設計 1984;45:p39-43。
李碩重:照明設計學。全華科技圖書公司 1993;p29。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top