跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何之遠
研究生(外文):Chi-Yuan Ho
論文名稱:預加壓力合併位置螺釘與壓力螺釘應用於骨折固定之生物力學比較
論文名稱(外文):Biomechanical Comparison between Preloaded Positional Screwing and Lag Screwing in Fracture Fixation
指導教授:蘇璧伶
指導教授(外文):Bi-Ling Su
口試委員:張雅珮陳炤彰
口試委員(外文):Ya-Pei ChangChao-Chang Chen
口試日期:2015-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床動物醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:預加壓力位置螺釘壓力螺釘骨髁骨折
外文關鍵詞:preloading compression effectpositional screwlag screwcondylar fracture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
犬之肱骨骨髁骨折為犬常見骨折之一。為保存肘關節之功能性,常建議以手術方式進行復位及骨折固定,以利骨折修復過程中發生直接性骨折癒合。經骨髁之壓力螺釘提供了固定骨髁骨折同時提供斷面間壓力的優點,進而達到直接性骨折癒合之目的;然而,其缺點包括骨質損失較多、術野暴露範圍較大及造成較多的周邊軟組織傷害,皆不利於骨折修復。過去曾有學者提出在長骨骨折固定上應用預加壓力之方法,先以預加壓力裝置在斷面間施壓,再以螺釘固定並維持先前施予的預加壓力。本研究目的為將預加壓力的概念應用於骨髁骨折固定,比較傳統壓力螺釘和預加壓力之位置螺釘產生與維持骨折斷面間壓力的效果,以及進行二者應用於犬隻骨髁骨折時之生物力學測試。
第一階段的研究中,將豬肋骨中段骨幹處橫切分為兩段,隨機分配一段為壓力螺釘組,另一段為預加壓力之位置螺釘組,各製造出長2 cm的半圓柱狀游離斷片,做為骨折模型。於斷面間放置薄膜型壓力感測器,分別植入壓力螺釘與預加壓力之位置螺釘。以不同扭力植入螺釘,進行三部分實驗,第一部份:7對樣本以0.2 Nm植入壓力螺釘及預加壓力之位置螺釘,第二部份:5對樣本以0.4 Nm植入壓力螺釘及預加壓力之位置螺釘,第三部份:10對樣本以0.2 Nm植入壓力螺釘、0.4 Nm植入預加壓力位置螺釘。將由壓力感測器取得的數據以Mann-Whitney test進行分析,p值<0.05表示有顯著差異。第二階段的研究則利用犬隻大體的雙側肱骨樣本製造出骨髁骨折,左右側肱骨分別植入壓力螺釘及預加壓力之位置螺釘後,以拉伸機機械試驗比較受力與斷片位移情形。
第一階段研究中的第一部份實驗結果顯示,以0.2 Nm植入壓力螺釘所產生斷面間之力量及壓力為2.71±1.05 Kg及1.48±0.62 MPa,預加壓力之位置螺釘則為2.69±1.22 kg及1.55±0.71 MPa,兩組間斷面間力量及壓力皆無顯著差異。第二部份實驗中,以0.4 Nm植入螺釘,所有壓力螺釘皆發生滑牙,導致斷面間力量及壓力為0±0 kg及0±0 MPa,預加壓力之定位螺釘力量與壓力分別為3.16±0.82 kg與1.83±0.47 MPa,兩組間在斷面間力量(p<0.01)及壓力(p<0.01)的比較上皆有顯著差異。第三部份實驗中,以0.2 Nm植入壓力螺釘,產生之斷面間力量與壓力分別為1.80±0.91 kg及1.04±0.53 MPa,而以0.4 Nm植入預加壓力之位置螺釘產生之斷面間力量與壓力分別為3.07±1.25 kg及1.77±0.74 MPa,兩組間的斷面間力量及壓力皆有顯著差異(p<0.03)。第四部份的實驗,比較未使用預加壓力之壓力螺釘與移除持骨鉗之後的預加壓力合併壓力螺釘,給予預加壓力之壓力螺釘的斷面間力量和壓力分別為3.01±1.06 kg及1.74±0.61 MPa,未使用預加壓力之壓力螺釘則為3.88±1.17 kg及2.24±0.67 MPa,兩者在統計上並無顯著差異(斷面間力量:p=o.75;斷面間壓力:p=0.75)。進一步分析後,移除持骨鉗前後之斷面間力量各為6.06±1.72 kg和3.01±1.06 kg(p<0.01),斷面間壓力則為3.50±0.99 MPa和1.74±0.61 MPa(p<0.01),移除持骨鉗之後斷面間力量和壓力皆顯著下降。
第二階段研究為前期試驗,共以兩組犬隻大體肱骨進行實驗,體重上分別為7 kg及22 kg。比較固定後X光片,使用預加壓力之位置螺釘在X光片下呈現較小的斷面間隙。而在進行拉伸機生物力學測試後,比較植入物失敗前最大位移下7 kg犬樣本之壓力螺釘及預加壓力之位置螺釘結果各為7.96 mm及4.11 mm、60%體重時則各為1.66 mm及0.68 mm而130%體重時則為2.44 mm及0.68 mm;而22 kg犬樣本之前述結果各為17.54 mm及7.97 mm、5.74 mm及1.37 mm、9.64 mm及3.97 mm;兩組之預加壓力之位置螺釘皆呈現較小位移。
依據上述結果,預加壓力之位置螺釘相比於壓力螺釘可以提供較大的斷面間壓力及力量、較大扭力耐受性、較小滑牙機會及較少斷面間位移等優點。但其於犬隻肱骨骨髁骨折的應用,仍需以更多時體樣本進行生物力學測試,以及活體病患臨床應用,以證實目前觀察結果之正確性。


Humeral condylar fracture is a common fracture in canine. In order to preserve the joint function, surgical management for reduction and steady fixation via transcondylar lag screw is recommended to achieve the direct bone healing. The advantage of lag screws is fixing the fracture and generating a compression effect concurrently. However, disadvantages of lag screws, such as increased loss of bone tissue, larger area for surgical approach, and creating more damage to the surrounding soft tissues, may delay the bone healing. In the literature, preloading compression effect has been proposed and applied in the fracture fixation for long bone. Prior to installing screws, a preloading compression device is applied to provide the interfragmentary compression effect, which would be maintained after screw installation and device removal.
The aims of the study is to evaluate the inter-fragmentary compression effect and biomechanical strength between preloading positional screws (PPS) and traditional lag screws (LS) in fracture fixation.
In the first stage of the study, fresh porcine rib was used to create the bone fracture model. The rib was transversely sawed at the midpoint, and randomly one of the paired segments was assigned to the LS group and the other to the PPS group. In each segment, a semi-cylindrical-shaped, 2-cm length, free bone fragment was created. A wireless film compressive sensor was placed in the fracture gap to record the real-time inter-fragmentary mechanical force, followed by screw installation. Three experiments were carried out: a) 0.2 Nm toque was applied to install screws in both groups in 7 paired samples, b) 0.4 Nm toque was applied to install screws in both groups in 5 paired samples, and c) 0.2 Nm toque was applied in LS group and 0.4 Nm torque in PPS group in 10 paired samples. Data from the film compressive sensor were analyzed by Mann-Whitney test. P value of less than 0.05 was considered statistically significant. In the second stage of the study, condylar fracture was created in paired humerus from canine cadaver and fixed by a LS or PPS. Biomechanical testing and radiographic evaluation was performed.
When applied 0.2 Nm torque, no significant difference was detected between two groups regarding the interfragmentary force and pressure. When applied 0.4 Nm torque, all LS failed due to stripped-thread so did not generate interfragmentary force and pressure. In the PSS group, the interfragmentary force and pressure was 3.16±0.82 kg and 1.83±0.47 MPa respectively. There were significant differences between two groups regarding both the interfragmentary force and pressure (p<0.01). In the third experiment, the interfragmentary force and pressure were 1.80±0.91 kg and 1.04±0.53 MPa in the LS group under 0.2 Nm torque, 3.07±1.25 kg and 1.77±0.74 MPa in the PPS group under 0.4 Nm torque. Significant differences were detected between two groups regarding the interfragmentary force and pressure (p<0.05). When comparing the interfragmentary force and pressure between conventional unpreloaded lag screws and preloaded lag screws after the removal of the preloading device, the results showed no significant difference between two groups no matter in force (force: 3.01±1.06 kg verse 3.88±1.17 kg, p=0.75; pressure: 1.74±0.61 MPa verse 2.24±0.67 MPa, p=0.75). However, when comparing the interfragmentary force and pressure before and after the removal of the preloading device in the group of preloaded lag screws, significant difference was detected in force (6.06±1.72 kg verse 3.01±1.06 kg, p<0.01) and pressure (3.50±0.99 MPa verse 1.74±0.61 MPa, p<0.01).
There was a pilot study in the second stage of the study, two pairs of humerus from a 7-kg and a 22-kg canine cadaver were examined. Radiographic evaluation revealed less interfragmentary gap in the PPS group. In addition, the displacements of LS and PPS were 7.96 mm and 4.11 mm respectively in 7-kg dog model before implant failure. The 60% of the body weight were 1.66 mm and 0.68 mm, and 130% of the body weight were 2.44 mm and 0.68 mm. In 22-kg dog model, the displacements were 17.54 mm and 7.97 before implant failure. The 60% of the body weight were 5.74 mm and 1.37 mm, and 130% of the body weight were 9.64 mm and 3.97 mm. Less device displacement was also noted in the PPS group under the maximal force prior to implant failure and the force equal to 60% and 130% of the body weight.
In conclusion, compared with traditional lag screws, preloading positional screw provides larger interfragmentary force and pressure, tolerates larger toque when installing, has lower chance of thread stripping, and creates less interfragmentary displacement during the biomechanical testing. However, larger sample size for the radiographic evaluation and biomechanical testing is needed to more dogs cadaver models further confirm the current observation and needed living patient in clinical application outcome.


口試委員審定書
誌謝 i
中文摘要 ii
Abstract iv
目錄 vii
圖目錄 x
表目錄 xii
第一章 序言 1
第二章 文獻探討 2
第一節:骨折之癒合方式 2
第一項:直接性骨折癒合 2
第一目:間隔直接性骨癒合 3
第二目:接觸直接性骨癒合 4
第二項:非直接性骨折癒合 5
第二節:肱骨骨髁骨折與修復 7
第一項:肱骨骨髁骨折之發生 7
第二項:肱骨骨髁骨折之手術治療 8
第一目:肱骨骨髁骨折之復位方式 8
第二目:壓力螺釘應用於骨髁骨折之內固定 8
第三目:應用於肱骨骨髁內固定的其他固定方式 12
第三節:位置螺釘之介紹 16
第四節:預加壓力於骨折修復的應用 17
第三章 研究目的 20
第四章 壓力螺釘與預加壓力之位置螺釘於骨折斷面間壓力產生之比較:前導實驗一 21
第一節:前導實驗之目的 21
第二節:實驗材料與方法 21
第一項:骨折模型及製造 21
第二項:斷面間力量測量儀器 22
第三項:實驗分組及流程 23
第四項:數據紀錄及統計 26
第三節:結果 26
第四節:討論 30
第五章:壓力螺釘與預加壓力之位置螺釘於骨折斷面間壓力之比較:前導實驗二 31
第一節:目的 31
第二節:材料與方法 31
第一項:骨折模型及製造、斷面間力量測量儀器、實驗分組及流程 31
第二項:數據紀錄 33
第三節:結果 33
第四節:討論 36
第六章:壓力螺釘與預加壓力之位置螺釘於骨折斷面間壓力產生之比較:前導實驗三 38
第一節:目的 38
第二節:材料及方法 38
第一項:骨折模型及製造、斷面間力量測量儀器、實驗分組及流程 38
第二項:數據紀錄 39
第三節:結果 39
第四節:討論 42
第七章:壓力螺釘與預加壓力之位置螺釘於骨折斷面間壓力產生之比較:正式實驗 43
第一節:目的 43
第二節:材料與方法 43
第一項:骨折模型及製造 43
第二項:壓力測量位置 43
第三項:實驗分組及流程 43
第四項:扭力板手之扭力設定及分組 44
第五項:數據紀錄及統計 44
第三節:結果 45
第一項:第一扭力組別 45
第二項:第二扭力組別 46
第三項:第三扭力組別 48
第四節:討論 51
第八章:壓力螺釘與預加壓力之壓力螺釘於骨折斷面間壓力產生之比較 52
第一節:目的 52
第二節:材料與方法 52
第一項:骨折模型及製造 52
第二項:壓力測量位置 52
第三項:實驗分組及流程 52
第四項:數據紀錄及統計 53
第三節:結果 54
第四節:討論 59
第九章:壓力螺釘與預加壓力之位置螺釘應用於犬隻肱骨骨髁骨折模型之比較:體外生物力學研究 60
第一節:目的 60
第二節:材料與方法 60
第一項:犬隻肱骨之樣本及保存 60
第二項:骨髁骨折之製造 60
第三項:實驗分組及螺釘施打 61
第四項:拉伸機之生物力學測試 62
第五項:數據紀錄 63
第六項:影像學評估 63
第三節:結果 64
第十章 討論 68
第一節、位置螺釘維持預加壓力之效果 68
第二節、預加壓力之位置螺釘與壓力螺釘之比較 69
第三節:壓力螺釘及預加壓力位置螺釘之復位比較應用於肱骨骨髁骨折固定時復位效果之比較 71
第四節:壓力螺釘與預加壓力位置螺釘應用於肱骨骨髁骨折固定之生物力學測試比較 73
第五節:本研究之限制 74
第十一章 結論 76
第十二章 參考資料 77


1. Bardet JF, Hohn RB, Rudy RL, Olmstead ML. Fractures of the humerus in dogs and cats a retrospective study of 130 cases. Vet Surg 12:73-77, 1983.
2. Denny HR. Condylar fractures of the humerus in the dog; a review of 133 cases. J Small Anim Pract 24:185-197, 1983.
3. Vannini R, Olmstead ML, Smeak DD. Humeral condylar fracture caused by minor trauma in 20 adult dogs. J Am Anim Hosp Assoc 24:355-362, 1988.
4. Gordon WJ, Besancon MF, Conzemius MG, Miles KG, Kapatkin AS. Frequency of post- traumatic osteoarthritis in dogs after repair of a humeral condylar fracture. Vet Comp Orthop Traumatol 1:1-5, 2003.
5. Cross AR. Fracture biology and biomechanics. In: Tobias KM, Johnston SA, ed. Veterinary surgery: small animal. Saunders, Elsevier, 565-571, 2012.
6. McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br 60:150-162, 1978.
7. Willenegger H, Perren SM, Schenk R. Primary and secondary healing of bone fractures. Chirurg 42:241-252, 1971.
8. Phillips AM. Overview of the fracture healing cascade. Injury 36 Suppl:S5-7, 2005.
9. Johnson AL. Fundamentals of orthopedic surgery and fracture management. In: Fossum TW, ed. Small animal surgery, 4th ed. St. Louis: Mosby. 1033-1106, 2013.
10. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355 Suppl:S132-147, 1998.
11. Rahn BA. Direct and indirect bone healing after operative fracture treatment. Otolaryngol Clin North Am 20:425-440, 1987.
12. Rahn BA. Bone healing: histologic and physiologic concepts. In: Fackelman GE, ed. Bone in clinical orthopedics. New yoru: Stuttgart. 287-326, 2002..
13. Kaderly RE. Primary bone healing. Semin Vet Med Surg (Small Anim) 6:21-25, 1991..
14. Shapiro F. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. J Bone Joint Surg Am 70:1067-1081, 1988.
15. Pape HC. Giannoudis PV, Grimme K, van Griensven M, Krettek C. Effects of intramedullary femoral fracture fixation: what is the impact of experimental studies in regards to the clinical knowledge? Shock 18:291-300, 2002.
16. Marsell R, Einhorn TA. The biology of fracture healing. Injury 42:551-555, 2011.
17. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv 14: 64-72, 2005..
18. Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Staolepton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn TA. Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54:1215-1228, 2006.
19. Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513-520, 2002.
20. Granero-Molto F, Weis JA, Miga MI, Landis B, Myers TJ, O''Real L, Longobardi L, Jansen ED, Mortlock DP, Spagnoli A. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887-1898, 2009.
21. Frost HM. A 2003 Update of Bone Physiology and Wolff''s Law for Clinicians. Angle Orthod 74:3-15, 2004.
22. Hare WC. The ages at which the centers of ossification appear roentgenographically in the limb bones of the dog. Am J Vet Res 22:825-835, 1961.
23. Langley-Hobbs SJ. Fracture of the humerus. In: Tobias KM, Johnston SA, ed. Veterinary surgery: small animal. Saunders, Elsevier, 709-723, 2012.
24. Cook JL, Tomlinson JL, Reed AL. Fluoroscopically guided closed reduction and internal fixation of fractures of the lateral portion of the humeral condyle: prospective clinical study of the technique and results in ten dogs. Vet Surg 28:315-321, 1999.
25. Johnson AL, Seitz SE, Smith CW, Johnson JM, Schaeffer DJ. Closed reduction and type-II external fixation of comminuted fractures of the radius and tibia in dogs: 23 cases (1990-1994). J Am Vet Med Assoc 209: 1445-1448, 1996.
26. Morshead D, Stambaugh JE. Kirschner wire fixation of lateral humeral condylar fractures in small dogs. Vet Surg 13:1-5, 1984.
27. Guille AE, Lewis DD, Anderson TP, Beaver DP, Carrera-Justiz SC, Thompson MS, Wheeler JL. Evaluation of surgical repair of humeral condylar fractures using self-compressing orthofix pins in 23 dogs. Vet Surg 33:314-322, 2004.
28. Johnston SA, von Pfeil DJF, Déjardin LM, Weh M, Roe S. Internal fracture fixation. In: Tobias KM, Johnston SA, ed. Veterinary surgery: small animal. Saunders, Elsevier, 576-607, 2012.
29. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 99-112, 2986.
30. Piermattei DL, Johnson KA. An atlas of surgical approaches to the bones and joints of dog and cat. 4th ed. Philadelphia: Sauders, 2004.
31. Lanz OI, Lewis DD, Newell SM. Stabilization of a physeal fracture using an Orthofix partial-threaded Kirschner wire. Vet Comp Orthopaed 48-51, 1999..
32. Vida JT, Pooya H, Vasseur PB, Garcia TC, Schulz K, Stover SM. Biomechanical comparison of orthofix pins and cortical bone screws in a canine humeral condylar fracture model. Vet Surg 34:491-498, 2005.
33. Nielsen C, Stover SM, Schulz KS, Hubbard M, Hawkins DA. Two-dimensional link-segment model of the forelimb of dogs at a walk. Am J Vet Res 64:609-617, 2003.
34. McLaughlin RM Jr, Roush JK. Effects of subject stance time and velocity on ground reaction forces in clinically normal greyhounds at the trot. Am J Vet Res 55:1666-1671, 1994.
35. Rovinsky D, Haskell A, Liu Q, Paiment GD, Robinovitch S. Evaluation of a new method of small fragment fixation in a medial malleolus fracture model. J Orthop Trauma 14:420-425, 2000.
36. Daubs BM, McLaughlin RM, Silverman E, Rizon J. Evaluation of compression generated by self compressing Orthofix bone pins and lag screws in simulated lateral humeral condylar fractures. Vet Comp Orthop Traumatol 20:175-179, 2007.
37. Danis R. Théorie et pratique de l’ostéosynthèse. Paris: Masson, 1949.
38. Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: short history and recent developments. J Orthop Sci 11:118-126, 2006..
39. Müller ME, Willenegger MA. Compression fixation with plates. Technique of internal fixation of fractures. Berlin: Spring 1965.
40. Ruedi TP, Bucjley RB, Moran CG. AO principles of fracture management, 2nd ed. 2007.
41. Post TM, Cremers SC, Kerbusch T, Danhof M. Bone Physiology, Disease and Treatment: towards disease system analysis in osteoporosis. Clin Pharmacokinet 49:89-118, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top