跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施威利
研究生(外文):Wei-Li Shih
論文名稱:以傳染病數理模型評估聖多美及普林西比之瘧疾介入政策
論文名稱(外文):Evaluating the potential impact of malaria control strategies in Sao Tome and Principe
指導教授:林先和林先和引用關係
指導教授(外文):Hsien-Ho Lin
口試委員:蔡坤憲方啟泰
口試委員(外文):Kun-Hsien TsaiChi-Tai Fang
口試日期:2015-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:39
中文關鍵詞:瘧疾傳染病數理模型聖多美與普林西比
外文關鍵詞:malariadynamic modellingSao Tome and Principe
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結合室內殘效噴灑(IRS)、長效型浸藥蚊帳(ITNs)以及利用蘇力氏菌以色列變種(BTI)進行幼蟲防治等瘧疾介入措施的效果,聖多美與普林西比民主共和國(以下簡稱聖國)在2005年後成功將瘧疾疫情控制在清除前期的標準。但在現行的介入政策下是否能根絕當地的瘧疾疫情仍然未知,這些介入措施個別在疫情上的影響效果尚待釐清,以便聖國當局規劃未來的瘧疾介入策略。

本研究以傳染病數理模型探討聖國當地瘧疾在人蚊之間的傳染模式,並以世衛瘧疾年報中聖國1995年至2013年的年瘧疾確診個案發生率作為數理模型的校正基準,針對IRS、ITNs以及BTI於過去2005年至2013年中對瘧疾疫情下降的貢獻作評估;為評估2013年後最有效益的介入策略,我們亦以此模型評估在提升三種介入覆蓋率後相對於現行措施所能多預防的瘧疾個案比利。結果顯示,於2005年至2013年間,每種介入的效果對於瘧疾疫情的降低皆有決定性的影響,必須結合此三種介入的效果才能使瘧疾疫情維持在低傳播的狀態。

2013年後各別介入政策的效益又以提高BTI覆蓋率能預防的瘧疾個案最多,相較於現行的介入覆蓋率,提高BTI覆蓋率至0.5能在2015年預防83.6%的瘧疾病人,若三種介入的覆蓋率皆提升至0.5則能預防97%的瘧疾個案。從本研究的結果可看出IRS、ITNs、BTI等介入政策在聖多美與普林西比瘧疾疫情控制上的重要性,其中又以BTI的效果最為明顯,可作為聖國未來在根除瘧疾策略上的優先考量。


Background
Malaria transmission in Sao Tome and Principe declined after 2005 by the efforts of indoor-residual spraying insecticide-treated nets, and larviciding with Bacillus thuringiensis israelensis. However, it remains unclear whether Sao Tome and Principe can achieve malaria elimination under current control strategies
Methods
A human-mosquito malaria compartmental model was built to capture the malaria transmission dynamic in Sao Tome and Principe. After calibration by annual malaria confirmed incidence from 1995 to 2013 in WHO annual report and collected mosquito densities, our model was used to evaluate the impact of each intervention on malaria transmission in 2005 to 2013 and after 2013 for future malaria control planning.
Results
Compared to the low disease level (57.7 cases/1000 person-year) under current intervention coverage, malaria incidence would have remained at the high level in year 2013 (352, 336, 344 cases/1000 person-year) in the absence of BTI, without IRS, and without ITNs scenario. On the other hand, scaling up BTI (50% coverage) can prevent 83.6% of malaria cases compared to the current strategy in 2015, while intensive intervention strategies (All 50% coverage) prevents 97% malaria cases.
Discussion
Our result shows the relative impacts of IRS, ITNs, and BTI for malaria control in Sao Tome and Principe. To eliminate malaria, intensive larviciding with BTI could be the first priority for local governments in decision making.


口試委員會審定書............................................i
Acknowledgements...........................................ii
摘要......................................................iii
Abstract...................................................iv
Contents...................................................vi
Chapter 1. Introduction.....................................1
1.1 Background of malaria...............................1
1.2 Malaria in Sao Tome and Principe....................1
1.3 Mathematical model of malaria.......................3
Chapter 2. Materials and methods............................5
2.1 Model description.......................................5
2.2 Interventions considered................................6
2.3 Sources of data.........................................8
2.4 Model parameterization..................................9
2.5 Scenario for interventions..............................9
2.6 Sensitivity analysis...................................10
Chapter 3. Results.........................................11
3.1 Model calibration with malaria confirmed cases.........11
3.2 Model calibration with average mosquito number per household...11
3.3 Model prediction with counterfactual intervention strategies..12
3.4 Model prediction for future elimination strategies.....12
3.5 Sensitivity analysis...................................13
Chapter 4. Discussion......................................14
Reference..................................................20
Figures and tables.........................................22
Appendix...................................................30


Refferences
1.Who., World malaria report 2014. 2015: World Health Organization.
2.Organization, W.H., Malaria elimination: a field manual for low and moderate endemic countries. 2007.
3.Teklehaimanot, H.D., et al., Malaria in Sao Tome and principe: on the brink of elimination after three years of effective antimalarial measures. Am J Trop Med Hyg, 2009. 80(1): p. 133-40.
4.Lee, P.W., et al., Pre-elimination of malaria on the island of Principe. Malar J, 2010. 9: p. 26.
5.Okumu, F.O. and S.J. Moore, Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J, 2011. 10: p. 208.
6.Doolan, D.L., C. Dobano, and J.K. Baird, Acquired immunity to malaria. Clin Microbiol Rev, 2009. 22(1): p. 13-36, Table of Contents.
7.Schwenk, R.J. and T.L. Richie, Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol, 2011. 27(7): p. 306-14.
8.Ross, R., Some a priori pathometric equations. British medical journal, 1915. 1(2830): p. 546.
9.Mandal, S., R.R. Sarkar, and S. Sinha, Mathematical models of malaria--a review. Malar J, 2011. 10: p. 202.
10.Koella, J.C., On the use of mathematical models of malaria transmission. Acta Trop, 1991. 49(1): p. 1-25.
11.Dietz, K., L. Molineaux, and A. Thomas, A malaria model tested in the African savannah. Bull World Health Organ, 1974. 50(3-4): p. 347-57.
12.Chitnis, N., D. Hardy, and T. Smith, A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol, 2012. 74(5): p. 1098-124.
13.Parham, P.E. and E. Michael, Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect, 2010. 118(5): p. 620-6.
14.White, L.J., et al., The role of simple mathematical models in malaria elimination strategy design. Malar J, 2009. 8: p. 212.
15.Tseng, L.F., et al., Rapid control of malaria by means of indoor residual spraying of alphacypermethrin in the Democratic Republic of Sao Tome and Principe. The American journal of tropical medicine and hygiene, 2008. 78(2): p. 248-250.
16.N''Guessan, R., et al., Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, 2007. 13(2): p. 199-206.
17.Alonso, P.L., et al., A research agenda to underpin malaria eradication. PLoS Med, 2011. 8(1): p. e1000406.
18.Fillinger, U., B.G. Knols, and N. Becker, Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health, 2003. 8(1): p. 37-47.
19.Kleinschmidt, I., et al., Combining indoor residual spraying and insecticide-treated net interventions. Am J Trop Med Hyg, 2009. 81(3): p. 519-24.
20.Chitnis, N., et al., Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg, 2010. 83(2): p. 230-40.
21.Griffin, J.T., et al., Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med, 2010. 7(8).
22.Ferguson, H.M., et al., Ecology: a prerequisite for malaria elimination and eradication. PLoS Med, 2010. 7(8): p. e1000303.

Appendix references
1.White, L.J., et al., The role of simple mathematical models in malaria elimination strategy design. Malar J, 2009. 8: p. 212.
2.Filipe, J.A., et al., Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol, 2007. 3(12): p. e255.
3.Russell, T.L., et al., Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors. Proc Biol Sci, 2011. 278(1721): p. 3142-51.
4.Yang, G.-J., et al., Importance of endogenous feedback controlling the long-term abundance of tropical mosquito species. Population Ecology, 2008. 50(3): p. 293-305.
5.UN, D., World Population Prospects: The 2012 Revision. 2013, United Nations, Department of Economic and Social Affairs, Population Division New York, NY, USA.
6.Drakeley, C., et al., The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol, 2006. 22(9): p. 424-30.
7.Miller, M.J., Observations on the natural history of malaria in the semi-resistant West African. Trans R Soc Trop Med Hyg, 1958. 52(2): p. 152-68.
8.Maire, N., et al., A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in endemic areas. Am J Trop Med Hyg, 2006. 75(2 Suppl): p. 19-31.
9.Bayoh, M.N. and S.W. Lindsay, Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol, 2004. 18(2): p. 174-9.
10.Reyburn, H., et al., Rapid diagnostic tests compared with malaria microscopy for guiding outpatient treatment of febrile illness in Tanzania: randomised trial. BMJ, 2007. 334(7590): p. 403.
11.N''Guessan, R., et al., Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, 2007. 13(2): p. 199-206.
12.Griffin, J.T., et al., Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med, 2010. 7(8).
13.Who., World malaria report 2014. 2015: World Health Organization.
14.Sanitário, I.D.e., Sao Tome and Principe DHS, 2008-09 - Final Report. 2010.
15.WP, D., et al., WHO recommended insecticides for indoor residual spraying against malaria vectors.
16.Lindblade, K.A., et al., Evaluation of long-lasting insecticidal nets after 2 years of household use. Trop Med Int Health, 2005. 10(11): p. 1141-50.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top