跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐瑞鴻
研究生(外文):Jui-Hong Hsu
論文名稱:Scn1a基因突變 (Dravet症候群) 調控神經幹細胞之增生與分化
論文名稱(外文):Study on the effects of Scn1a mutation (Dravet syndrome) in neurogenesis
指導教授:劉宏輝劉宏輝引用關係
指導教授(外文):Horng-Huei Liou
口試委員:符文美林泰元潘建源
口試委員(外文):Wen-Mei FuThai-Yen LingChien-Yuan Pan
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:神經幹細胞神經新生Scn1aNav1.1Dravet 症候群
外文關鍵詞:Neural stem cellsneurogenesisScn1aNav1.1Dravet syndrome
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  Dravet症候群是發生於嬰兒時期的癲癇疾病,同時伴隨著心智發展遲緩以及自閉症的產生。目前已知絕大多數的Dravet症候群病患是因為Scn1a基因突變導致第一型鈉離子通道 (Nav1.1) 異常。幼兒患有Dravet症候群會有嚴重的視覺知覺能力及空間記憶能力低下,其中空間記憶能力與海馬迴的神經新生有著很大的關聯性,然而Scn1a基因與神經新生的調控仍是未知,因此我們建立一個帶有人類Scn1a基因突變點的Dravet小鼠 (Scn1a1099X/+),此小鼠具有自發性癲癇以及對熱誘發癲癇的表徵,與Dravet症候群病人的症狀相符。因此本篇論文使用一天大 (postnatal day 1, PD1) 及八天大 (postnatal day 8, PD8) Dravet小鼠進行體外神經幹細胞球培養,藉由分析其形成神經球數量以及免疫細胞染色探討神經幹細胞增生的能力,同時將神經球進行分化再用免疫細胞染色探討神經幹細胞分化能力。實驗結果顯示Scn1a基因轉殖鼠所培養出的神經幹細胞球的數目會增加,此神經幹細胞球的數目增加是藉由細胞增生指標Ki67增加所導致,此外也發現神經幹細胞指標GAFP細胞增加以及細胞內鈣離子濃度增加。神經幹細胞除了具有增生的能力外,也具有分化成神經、星形膠質細胞以及寡突膠細胞的能力,將神經幹細胞球分化5天後發現DCX+神經細胞在PD1會增加,而Tuj1+神經細胞在則PD1及PD8皆上升,同時發現CNPase+寡突膠細胞在PD8會下降。進一步的將細胞分化15天後會發現MAP2+神經細胞數會增加,且些神經細胞中有80%會分化成GAD67+抑制性神經元。過去已知GABA會調控神經新生,因此進一步探討GABA對Scn1a基因缺陷的神經幹細胞影響,結果顯示GABA會促進PD1神經幹細胞球的形成,但抑制PD8神經幹細胞球形成,進一步將神經幹細胞球分化五天後,可抑制Scn1a基因缺陷後的異常神經分化。綜合上述結果發現Scn1a基因缺陷後會加速神經幹細胞分化成神經細胞,顯示Scn1a基因會調控神經新生。

Dravet syndrome is a refractory seizure characterized by severe infant-onset myoclonic epilepsy, delayed psychomotor development and autism-spectrum behaviours. Loss-of-function mutations in Scn1a gene which encodes the type Ⅰvoltage-gated sodium channel (Nav1.1) is the predominant molecular cause in most patients. Children with Dravet syndrome are significantly impaired in visuo-perceptual skill performance, and the spatial memory have been reported close relative to hippocampus neurogenesis. However, the underlying dysfunction of the Scn1a gene might confer to the brain neurogenesis is largely unknown. Here, we constructed a transgenic mice with Scn1a1099X knock-in (KI) allele which presented an animal model of Dravet syndrome, exhibited spontaneous epileptic discharges and susceptible to hyperthermia-induced seizures. Our results show that Nav1.1 deficiency lead to significant increase in neural stem cell-derived neurospheres number and accompanied with increasing neural stem cell (NSC) marker, GFAP. Quantification of cell division with the proliferation indicator, Ki67 or PCNA, showed that cell proliferation was significant increase result from Nav1.1 dysfunction. Measurement of [Ca2+]i by fura-2 AM Ca2+ imaging demonstrated that [Ca2+]i was markedly elevated in neurospheres derived from Scn1a mutation mice. NSC are characterized as cells with potential to produce a large amount of progeny that grow and differentiate into neuron, astrocyte and oligodendrocyte. Immunocytochemistry result indicated that loss of Nav1.1 in NSC result in significant increase the neuroblast and immature neuron but oligodendrocyte in neurosphere-derived cells which isolated from postnatal day 1 mice. In contrast, NSC obtained from postnatal day 8 Scn1a-deficit animal showed an upregulation of immature neuron and oligodendrocyte lineage but neuroblast. Moreover, prolonged differentiation for 2 weeks of neurosphere-derived cell culture isolated from postnatal day 1 Scn1a-mutant mice revealed that the ratio of mature neuron and GABAergic neuron were dramatically increased. GABA has been known to regulate neurogenesis, thus we further to investigate the effects of GABA on Scn1a deficiency neurosphere. Our results show that GABA promote neurosphere formation in PD1 neurosphere, but inhibit neurosphere formation in PD8 neurosphere. When neurosphere were induced to differentiation for 5 days, we found abnormal neuronal differentiation were reverse by GABA. These results revealed that loss of Scn1a gene might contribute to promote NSCs differentiate into neuronal series. Our results support that Scn1a gene play an important role in postnatal neuronal development.

摘要 II
Abstract IV
圖目錄 VI
表目錄 VII
縮寫表 VIII
第一章 緒論 (Introduction) 1
第一節 Dravet症候群 1
第二節 鈉離子通道簡介 2
第三節 Dravet症候群之動物模式研究 3
第四節 異常神經新生與癲癇及行為模式改變之關係 4
第五節 神經新生之調控 5
第六節 研究動機與目的 6
第二章 實驗材料與方法 (Materials and Methods) 8
第一節 實驗動物 8
第二節 神經幹細胞培養 8
第三節 神經幹細胞分化 9
第四節 免疫細胞染色法 (Immunocytochemistry) 9
第五節 西方點墨法 (Western blot) 10
第六節 活細胞鈣離子濃度測定 10
第七節 統計分析 10
第三章 結果 (Result) 11
第一節 Nav1.1表達在神經幹細胞 11
第二節 Scn1a缺陷會造成神經幹細胞增生 12
第三節 Scn1a突變後會造成細胞內鈣離子濃度增加 13
第四節 Scn1a缺陷後會促使幹細胞分化成神經細胞 14
第五節 Scn1a缺陷會促使神經幹細胞分化成抑制性神經元 16
第六節 TTX抑制神經幹細胞之增生,但促進其分化成神經細胞 16
第七節 GABA可抑制Scn1a缺陷後造成的神經新生 17
第四章 討論 (Discussion) 20
第一節 總述 20
第二節 鈉離子通道調控神經幹細胞之增生與分化 20
第三節 鈣離子訊息傳遞路徑調控神經新生 23
第四節 GABA調控神經新生 24
第五節 未來展望 25
第五章 圖表 (Figures) 27
參考文獻 (References) 67

Azim, K., Fischer, B., Hurtado-Chong, A., Draganova, K., Cantu, C., Zemke, M., Sommer, L., Butt, A., and Raineteau, O. (2014). Persistent Wnt/beta-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32, 1301-1312.
Barrack, D.S., Thul, R., and Owen, M.R. (2014). Modelling the coupling between intracellular calcium release and the cell cycle during cortical brain development. J Theor Biol 347, 17-32.
Battaglia, D., Chieffo, D., Siracusano, R., Waure, C., Brogna, C., Ranalli, D., Contaldo, I., Tortorella, G., Dravet, C., Mercuri, E., et al. (2013). Cognitive decline in Dravet syndrome: is there a cerebellar role? Epilepsy Res 106, 211-221.
Belgacem, Y.H., and Borodinsky, L.N. (2011). Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc Natl Acad Sci U S A 108, 4482-4487.
Black, J.A., Dib-Hajj, S., Cohen, S., Hinson, A.W., and Waxman, S.G. (1998). Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes. Glia 23, 200-208.
Black, J.A., Newcombe, J., and Waxman, S.G. (2010). Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain 133, 835-846.
Bonaguidi, M.A., Song, J., Ming, G.L., and Song, H. (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22, 754-761.
Brunklaus, A., and Zuberi, S.M. (2014). Dravet syndrome--from epileptic encephalopathy to channelopathy. Epilepsia 55, 979-984.
Cai, J., Cheng, A., Luo, Y., Lu, C., Mattson, M.P., Rao, M.S., and Furukawa, K. (2004). Membrane properties of rat embryonic multipotent neural stem cells. J Neurochem 88, 212-226.
Campbell, T.M., Main, M.J., and Fitzgerald, E.M. (2013). Functional expression of the voltage-gated Na(+)-channel Nav1.7 is necessary for EGF-mediated invasion in human non-small cell lung cancer cells. J Cell Sci 126, 4939-4949.
Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A., and Lledo, P.M. (2003). Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6, 507-518.
Carrithers, M.D., Chatterjee, G., Carrithers, L.M., Offoha, R., Iheagwara, U., Rahner, C., Graham, M., and Waxman, S.G. (2009). Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A. J Biol Chem 284, 8114-8126.
Catterall, W.A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25.
Cheah, C.S., Yu, F.H., Westenbroek, R.E., Kalume, F.K., Oakley, J.C., Potter, G.B., Rubenstein, J.L., and Catterall, W.A. (2012). Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 109, 14646-14651.
Chieffo, D., Ricci, D., Baranello, G., Martinelli, D., Veredice, C., Lettori, D., Battaglia, D., Dravet, C., Mercuri, E., and Guzzetta, F. (2011). Early development in Dravet syndrome; visual function impairment precedes cognitive decline. Epilepsy Res 93, 73-79.
Chiron, C., Marchand, M.C., Tran, A., Rey, E., d''Athis, P., Vincent, J., Dulac, O., and Pons, G. (2000). Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 356, 1638-1642.
D''Arcangelo, G., and Curran, T. (1998). Reeler: new tales on an old mutant mouse. BioEssays 20, 235-244.
D''Ascenzo, M., Piacentini, R., Casalbore, P., Budoni, M., Pallini, R., Azzena, G.B., and Grassi, C. (2006). Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur J Neurosci 23, 935-944.
Deisseroth, K., Mermelstein, P.G., Xia, H., and Tsien, R.W. (2003). Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 13, 354-365.
Deisseroth, K., Singla, S., Toda, H., Monje, M., Palmer, T.D., and Malenka, R.C. (2004). Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535-552.
Depienne, C., Bouteiller, D., Keren, B., Cheuret, E., Poirier, K., Trouillard, O., Benyahia, B., Quelin, C., Carpentier, W., Julia, S., et al. (2009a). Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 5, e1000381.
Depienne, C., Trouillard, O., Saint-Martin, C., Gourfinkel-An, I., Bouteiller, D., Carpentier, W., Keren, B., Abert, B., Gautier, A., Baulac, S., et al. (2009b). Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 46, 183-191.
Diaz, D., Delgadillo, D.M., Hernandez-Gallegos, E., Ramirez-Dominguez, M.E., Hinojosa, L.M., Ortiz, C.S., Berumen, J., Camacho, J., and Gomora, J.C. (2007). Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol 210, 469-478.
Ding, F., Zhang, G., Liu, L., Jiang, L., Wang, R., Zheng, Y., Wang, G., Xie, M., and Duan, Y. (2012). Involvement of cationic channels in proliferation and migration of human mesenchymal stem cells. Tissue & cell 44, 358-364.
Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M., and Greenberg, M.E. (2001). Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333-339.
Dravet, C., Bureau, M., Oguni, H., Fukuyama, Y., and Cokar, O. (2005). Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95, 71-102.
Dutton, S.B., Makinson, C.D., Papale, L.A., Shankar, A., Balakrishnan, B., Nakazawa, K., and Escayg, A. (2013). Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiol Dis 49, 211-220.
Fuchs, C., Trazzi, S., Torricella, R., Viggiano, R., De Franceschi, M., Amendola, E., Gross, C., Calza, L., Bartesaghi, R., and Ciani, E. (2014). Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis 70, 53-68.
Fukui, M., Nakamichi, N., Yoneyama, M., Ozawa, S., Fujimori, S., Takahata, Y., Nakamura, N., Taniura, H., and Yoneda, Y. (2008). Modulation of cellular proliferation and differentiation through GABA(B) receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. J Cell Physiol 216, 507-519.
Gao, R., Shen, Y., Cai, J., Lei, M., and Wang, Z. (2010). Expression of voltage-gated sodium channel alpha subunit in human ovarian cancer. Oncol Rep 23, 1293-1299.
Gazina, E.V., Richards, K.L., Mokhtar, M.B., Thomas, E.A., Reid, C.A., and Petrou, S. (2010). Differential expression of exon 5 splice variants of sodium channel alpha subunit mRNAs in the developing mouse brain. Neuroscience 166, 195-200.
Ghiani, C.A., Yuan, X., Eisen, A.M., Knutson, P.L., DePinho, R.A., McBain, C.J., and Gallo, V. (1999). Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. J Neurosci 19, 5380-5392.
Giachino, C., Barz, M., Tchorz, J.S., Tome, M., Gassmann, M., Bischofberger, J., Bettler, B., and Taylor, V. (2014). GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 141, 83-90.
Gillet, L., Roger, S., Besson, P., Lecaille, F., Gore, J., Bougnoux, P., Lalmanach, G., and Le Guennec, J.Y. (2009). Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. J Biol Chem 284, 8680-8691.
Goldin, A.L. (1999). Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci 868, 38-50.
Goldin, A.L. (2001). Resurgence of sodium channel research. Annu Rev Physiol 63, 871-894.
Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C., Kallen, R.G., Mandel, G., Meisler, M.H., Netter, Y.B., et al. (2000). Nomenclature of voltage-gated sodium channels. Neuron 28, 365-368.
Haas, C.A., and Frotscher, M. (2010). Reelin deficiency causes granule cell dispersion in epilepsy. Exp Brain Res 200, 141-149.
Han, S., Tai, C., Westenbroek, R.E., Yu, F.H., Cheah, C.S., Potter, G.B., Rubenstein, J.L., Scheuer, T., de la Iglesia, H.O., and Catterall, W.A. (2012). Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385-390.
Harkin, L.A., Bowser, D.N., Dibbens, L.M., Singh, R., Phillips, F., Wallace, R.H., Richards, M.C., Williams, D.A., Mulley, J.C., Berkovic, S.F., et al. (2002). Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 70, 530-536.
House, C.D., Vaske, C.J., Schwartz, A.M., Obias, V., Frank, B., Luu, T., Sarvazyan, N., Irby, R., Strausberg, R.L., Hales, T.G., et al. (2010). Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 70, 6957-6967.
Isom, L.L. (2002). The role of sodium channels in cell adhesion. Front Biosci 7, 12-23.
Isom, L.L., Ragsdale, D.S., De Jongh, K.S., Westenbroek, R.E., Reber, B.F., Scheuer, T., and Catterall, W.A. (1995). Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433-442.
Johnson, M.A., Weick, J.P., Pearce, R.A., and Zhang, S.C. (2007). Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27, 3069-3077.
Kerjan, G., Koizumi, H., Han, E.B., Dube, C.M., Djakovic, S.N., Patrick, G.N., Baram, T.Z., Heinemann, S.F., and Gleeson, J.G. (2009). Mice lacking doublecortin and doublecortin-like kinase 2 display altered hippocampal neuronal maturation and spontaneous seizures. Proc Natl Acad Sci U S A 106, 6766-6771.
Khazipov, R., Esclapez, M., Caillard, O., Bernard, C., Khalilov, I., Tyzio, R., Hirsch, J., Dzhala, V., Berger, B., and Ben-Ari, Y. (2001). Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21, 9770-9781.
Knutson, P., Ghiani, C.A., Zhou, J.M., Gallo, V., and McBain, C.J. (1997). K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J Neurosci 17, 2669-2682.
Kondziella, D., Strandberg, J., Lindquist, C., and Asztely, F. (2011). Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus. Neuroreport 22, 97-100.
Konur, S., and Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron 46, 401-405.
Li, G.R., Sun, H., Deng, X., and Lau, C.P. (2005). Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells 23, 371-382.
Lin, S.C., and Bergles, D.E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7, 24-32.
LoTurco, J.J., Owens, D.F., Heath, M.J., Davis, M.B., and Kriegstein, A.R. (1995). GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287-1298.
MacFarlane, S.N., and Sontheimer, H. (2000). Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30, 39-48.
Makdessi, M.J., Barr, T.P., Xue, W., and Strichartz, G.R. (2015). Bupivacaine inhibits endothelin-1-evoked increases in intracellular calcium in model sensory neurons. Acta Anaesthesiol Scand 59, 936-945.
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M., and Greenberg, M.E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785-790.
Miller, A.R., Hawkins, N.A., McCollom, C.E., and Kearney, J.A. (2014). Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. Genes Brain Behav 13, 163-172.
Nakajima, T., Kubota, N., Tsutsumi, T., Oguri, A., Imuta, H., Jo, T., Oonuma, H., Soma, M., Meguro, K., Takano, H., et al. (2009). Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 156, 420-431.
Nelson, M., Yang, M., Dowle, A.A., Thomas, J.R., and Brackenbury, W.J. (2015). The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer 14, 13.
Nishimoto, M., Furuta, A., Aoki, S., Kudo, Y., Miyakawa, H., and Wada, K. (2007). PACAP/PAC1 autocrine system promotes proliferation and astrogenesis in neural progenitor cells. Glia 55, 317-327.
Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., Takeuchi, T., Itohara, S., Yanagawa, Y., Obata, K., et al. (2007). Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 27, 5903-5914.
Oguni, H., Hayashi, K., Awaya, Y., Fukuyama, Y., and Osawa, M. (2001). Severe myoclonic epilepsy in infants--a review based on the Tokyo Women''s Medical University series of 84 cases. Brain Dev 23, 736-748.
Overstreet Wadiche, L., Bromberg, D.A., Bensen, A.L., and Westbrook, G.L. (2005). GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94, 4528-4532.
Paliouras, G.N., Hamilton, L.K., Aumont, A., Joppe, S.E., Barnabe-Heider, F., and Fernandes, K.J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32, 15012-15026.
Pappalardo, L.W., Samad, O.A., Black, J.A., and Waxman, S.G. (2014). Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+ /Ca2+ exchange. Glia 62, 1162-1175.
Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., and Lowenstein, D.H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17, 3727-3738.
Patino, G.A., Claes, L.R., Lopez-Santiago, L.F., Slat, E.A., Dondeti, R.S., Chen, C., O''Malley, H.A., Gray, C.B., Miyazaki, H., Nukina, N., et al. (2009). A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 29, 10764-10778.
Patrylo, P.R., Browning, R.A., and Cranick, S. (2006). Reeler homozygous mice exhibit enhanced susceptibility to epileptiform activity. Epilepsia 47, 257-266.
Redmond, L., Kashani, A.H., and Ghosh, A. (2002). Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999-1010.
Stephenson, D.T., O''Neill, S.M., Narayan, S., Tiwari, A., Arnold, E., Samaroo, H.D., Du, F., Ring, R.H., Campbell, B., Pletcher, M., et al. (2011). Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Molecular autism 2, 7.
Sundelacruz, S., Levin, M., and Kaplan, D.L. (2008). Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3, e3737.
Tai, C., Abe, Y., Westenbroek, R.E., Scheuer, T., and Catterall, W.A. (2014). Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 111, E3139-3148.
Teixeira, C.M., Kron, M.M., Masachs, N., Zhang, H., Lagace, D.C., Martinez, A., Reillo, I., Duan, X., Bosch, C., Pujadas, L., et al. (2012). Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 32, 12051-12065.
Tozuka, Y., Fukuda, S., Namba, T., Seki, T., and Hisatsune, T. (2005). GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803-815.
Tsai, M.S., Lee, M.L., Chang, C.Y., Fan, H.H., Yu, I.S., Chen, Y.T., You, J.Y., Chen, C.Y., Chang, F.C., Hsiao, J.H., et al. (2015). Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet Syndrome model during development. Neurobiol Dis 77, 35-48.
Uhlen, P., Fritz, N., Smedler, E., Malmersjo, S., and Kanatani, S. (2015). Calcium signaling in neocortical development. Dev Neurobiol 75, 360-368.
van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96, 13427-13431.
Weick, J.P., Groth, R.D., Isaksen, A.L., and Mermelstein, P.G. (2003). Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J Neurosci 23, 3446-3456.
Weissman, T.A., Riquelme, P.A., Ivic, L., Flint, A.C., and Kriegstein, A.R. (2004). Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647-661.
West, A.E., Chen, W.G., Dalva, M.B., Dolmetsch, R.E., Kornhauser, J.M., Shaywitz, A.J., Takasu, M.A., Tao, X., and Greenberg, M.E. (2001). Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98, 11024-11031.
Wu, W.K., Li, G.R., Wong, T.M., Wang, J.Y., Yu, L., and Cho, C.H. (2008). Involvement of voltage-gated K+ and Na+ channels in gastric epithelial cell migration. Mol Cell Biochem 308, 219-226.
Xu, B., Chen, S., Luo, Y., Chen, Z., Liu, L., Zhou, H., Chen, W., Shen, T., Han, X., Chen, L., et al. (2011). Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6, e19052.
Yasuda, T., Bartlett, P.F., and Adams, D.J. (2008). K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells. Mol Cell Neurosci 37, 284-297.
Yoneyama, M., Fukui, M., Nakamichi, N., Kitayama, T., Taniura, H., and Yoneda, Y. (2007). Activation of GABA(A) receptors facilitates astroglial differentiation induced by ciliary neurotrophic factor in neural progenitors isolated from fetal rat brain. J Neurochem 100, 1667-1679.
Yu, F.H., Mantegazza, M., Westenbroek, R.E., Robbins, C.A., Kalume, F., Burton, K.A., Spain, W.J., McKnight, G.S., Scheuer, T., and Catterall, W.A. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9, 1142-1149.
Zeng, L.H., Rensing, N.R., Zhang, B., Gutmann, D.H., Gambello, M.J., and Wong, M. (2011). Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet 20, 445-454.
Zhang, L.L., Delpire, E., and Vardi, N. (2007). NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98, 266-277.
Zuberi, S.M., Brunklaus, A., Birch, R., Reavey, E., Duncan, J., and Forbes, G.H. (2011). Genotype-phenotype associations in SCN1A-related epilepsies. Neurology 76, 594-600.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top