跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪郁婷
研究生(外文):Yu-Ting Hung
論文名稱:巴金森氏症病患於聽覺提示下執行節律性動作之依頻大腦皮質興奮性
論文名稱(外文):Frequency-Dependent Cortical Excitability in Rhythmic Movement with Auditory Cues in Parkinson’s Disease
指導教授:陸哲駒陸哲駒引用關係張雅如張雅如引用關係黃英儒黃英儒引用關係
指導教授(外文):Jer-Junn LuhYa-Ju ChangYing-Zu Huang
口試委員:周立偉黃正雅
口試委員(外文):Li-Wei ChouCheng-Ya Huang
口試日期:2015-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:聽覺提示巴金森氏症頻率動作表現大腦皮質興奮性
外文關鍵詞:Auditory cueParkinson’s diseasefrequencymotor performancemotor cortex excitability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:外在提示 (External cue) 被廣泛運用於巴金森氏症 (Parkinson’s disease) 之動作功能訓練。前驅研究發現,巴金森氏症病患於2赫茲聽覺提示下執行手指敲擊 (Finger tapping) 訓練後,除了動作表現進步外,亦可能調節大腦動作皮質的活性。然而,患者並不侷限於單一的動作頻率,且物理治療師會依病患狀況給予不同頻率的外在提示。根據以往研究,不同頻率的聽覺提示會影響巴金森氏症患者的動作表現,而大腦動作皮質活性是否能顯現不同頻率間的差異,目前仍未清楚。目的:本研究採用同步化的1赫茲或3赫茲的聽覺提示,對照無同步化的聽覺提示,並要求巴金森氏症病患執行節律性手指動作,觀察其動作表現,且利用經顱磁刺激 (Transcranial magnetic stimulation, TMS) 評估訓練前後大腦皮質興奮性改變情況,是否與2赫茲有所差異。以研究巴金森氏症於不同頻率之聽覺提示訓練時神經生理的改變及可能機轉。方法:此為隨機交叉研究 (Cross-over study),收取25位侯葉分期 (Modified Hoehn & Yahr Stage) 為I至III期原發性巴金森氏症候群患者,其中12位 (年齡為64.2 ± 8.0歲) 分配至1赫茲組,13位 (年齡為61.4 ± 9.4歲) 則分配至3赫茲組。而兩組受試者皆需接受兩次相隔一星期之介入,外在提示為同步化的聽覺提示下進行手指節律動作,而自我導引則於無聽覺提示下進行。結果:外在提示練習後,只有2赫茲組快速手指動作的變異度顯著減少 (p= .032),三組大腦皮質內的抑制強度 (Short intracortical inhibition, SICI) 顯著增加 (1赫茲:p= .002;2赫茲:p< .001;3赫茲:p< .001),且與自我引導練習後有顯著差別 (1赫茲:p< .001;2赫茲:p= .005;3赫茲:p= .011),而大腦皮質內促進強度 (Intracortical facilitation, ICF) 則顯著降低 (1赫茲:p= .006;3赫茲:p= .002)。三組間比較發現,大腦皮質內促進強度於1赫茲與3赫茲相對2赫茲有顯著差異 (1赫茲與2赫茲間:p= .001;2赫茲與3赫茲間:p= .008)。結論:僅2赫茲同步化聽覺提示能顯著增加節律性動作表現,雖然三者頻率皆能調節大腦皮質內興奮性,但並未能完整地解釋運動皮質興奮性之改變與運動表現的相互關係。

Background: External cues are widely applied on training motor functions in movement disorder such as Parkinson’s disease (PD). In our previous study, changes in the motor cortex excitability were shown the 2 Hz finger tapping with auditory cue might modulate the cortical activity in PD patients. However, movements of human subjects are not restricted to a specific rhythm, and physical therapists use external cues across different frequencies depending on patients’ status in rehabilitation. Frequency-dependent movement activities were reported in present studies. It is still unclear whether motor cortex activity reveals a frequency-dependent pattern at different rates in PD. Objective:The performance and motor cortex excitability of frequency-dependent finger movements with auditory cue in patients with PD were investigated in this study. To explore the mechanism underlying the auditory cued training across different frequencies, changes of motor cortex excitability were obtained by using transcranial magnetic stimulation (TMS). Methods: This study was a cross-over study. A total of twenty-five patients (H & Y stage I-III) were randomly assigned to 1 Hz (12 patients, 64.2 ± 8.0 years) or 3 Hz (13 patients, 61.4 ± 9.4 years) group. All participants received two sessions of experiment in random order, one was external-triggered condition which received auditory cue while performed movements, and self-initiated condition which performed movement after listened to required rhythm. Results: After training with auditory cues, CV of fast tapping only significantly decreased in 2 Hz condition (p= .032). There were significant increase of short intracortical inhibition (SICI) (1 Hz: p= .002; 2 Hz: p< .001; 3Hz: p< .001) and significant difference between ET and SI conditions (1 Hz: p< .001; 2 Hz: p= .005; 3Hz: p= .011). Significant post-training decrease of intracortical facilitation (ICF) in 1 Hz and 3 Hz groups (1 Hz: p= .006; 3Hz: p= .002). Additionally, ICF was significantly different between 1 Hz and 2 Hz conditions (p= .001), 2 Hz and 3 Hz conditions (p= .008). Conclusions: Only 2 Hz auditory cues had significant benefit in rhythmic movements. Though 1 Hz, 2 Hz and 3 Hz cues were able to modulate the cortical excitability in the motor cortex, the mechanisms involved in the application of auditory cues still needed more studies.

口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
LIST of ABBREVIATIONS VII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Purpose and Significance 2
1.3 Hypotheses 2
Chapter 2 Literature Review 5
2.1 Introduction of Parkinson’s disease 5
2.1.1 Functions of Basal Ganglia 5
2.1.2 Definition and Symptoms 5
2.1.3 Prevalence 7
2.1.4 Current Management 7
2.2 External Cue as Rehabilitative Technique 9
2.2.1 Effects of External Cue on Motor Performance 9
2.2.2 Effects of External Cue on Cortical Excitability 11
2.2.3 Potential Mechanisms of External Cue 12
2.3 Finger Tapping Test 15
2.3.1 Introduction of Finger Tapping Test 15
2.3.2 Synchronization-continuation Paradigm 16
2.4 Frequency-dependent Movement Control 17
2.5 Transcranial Magnetic Stimulation 18
2.5.1 Basic Principles of Transcranial Magnetic Stimulation 18
2.5.2 Assessment of Cortical Excitability 19
2.5.3 Application in Patients with Parkinson’s Disease 21
Chapter 3 Methodology 24
3.1 Study Design 24
3.2 Subjects 24
3.3 Experimental Assessment 25
3.4 Experimental Procedure 29
3.5 Statistical Analysis 29
Chapter 4 Results 31
4.1 Demographic and Clinical Data 31
4.2 Finger Tapping Test 31
4.2.1 Comfortable Tapping Task 31
4.2.2 Fast Tapping Task 32
4.2.3 Synchronization-continuation Task 32
4.3 Transcranial Magnetic Stimulation 33
4.3.1 Resting Motor Threshold (rMT) 33
4.3.2 Motor Evoked Potentials (MEPs) 33
4.3.3 Intracortical Inhibition (ICI) and Facilitation (ICF) 33
Chapter 5 Discussion 35
5.1 Motor Performance in Different Cue Frequencies 35
5.2 Motor Cortex Excitability in Different Cue Frequencies 36
5.3 Study Limitation and Future Study 38
Chapter 6 Conclusion and Clinical Relevance 40
REFERENCES 41
FIGURES 52
TABLES 58
APPENDICES 59

1.Harrington DL, Haaland KY, Hermanowicz N. Temporal processing in the basal ganglia. Neuropsychology 1998;12(1):3-12.
2.Nakamura R, Nagasaki H, Narabayashi H. Disturbances of rhythm formation in patients with Parkinson’s disease: part I. Characteristics of tapping response to the periodic signals. Percept Mot Skills 1978;46(1):63-75.
3.Giladi N, McDermott M, Fahn S, Przedborski S, Jankovic J, Stern M, et al. Freezing of gait in Parkinson’s disease: prospective assessment of the DATATOP cohort. Neurology 2001;56(12):1712-21.
4.Giladi N, Treves TA, Simon ES, Shabtai H, Orlov Y, Kandinov B, et al. Freezing of gait in patients with advanced Parkinson’s disease. J Neural Transm 2001;108(1):53-61.
5.Elsinger CL, Harrington DL, Rao SM. From preparation to online control: Reappraisal of nerual circuitry mediating internally generated and externally guided actions. Neuroimage 2006;31(3):1177-87.
6.Nieuwboer A, Kwakkel G, Rochester L, Jones D, van Wegen E, Willems AM, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry 2007;78(2):134-40.
7.Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenskins ME. Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch Phys Med Rehabil 2013;94(3):562-70.
8.Vercruysse S, Spildooren J, Heremans E, Vandenbossche J, Wenderoth N, Swinnen SP, et al. Abnormalitie and cue dependence of rhythmical upper-limb movements in Parkinson patients with freezing of gait. Neurorehabil Neural Repair 2012;26(6):636-45.
9.Mak M, Hallett M. Effect of cued training on motor evoked potential and cortical silent period in people with Parkinson’s disease. Clin Neurophysiol 2013; 124(3): 545-50.
10.Sawy NA, Shahine EM, Achmawi GA. Excitability in Parkinson’s disease: Evidence from motor evoked potential. Egypt J Neurol Psychiat Neurosurg 2013;50(2):199-204.
11.Freeman JS, Cody FW, Schady W. The influence of externaltiming cues upon the rhythm of voluntary movements in Parkinson’s disease. J NeurolNeurosurg Psychiatry 1993; 56(10):1078-84.
12.Arias P, Robles-Garcia V, Espinosa N, Corral Y, Cudeiro J. Validity of the finger tapping test in Parkinson''s disease, elderly and young healthy subjects: is there a role for central fatigue?Clin Neurophysiol 2012;123(10):2034-41.
13.Schlaug G, Sanes JN, Thangaraj V, Darby DG, Jancke L, Edelman RR et al. Cerbral activation covaries with movement rate. Neuroreport 1996;7(4):879-83.
14.Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H. Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 2003;18(3):731-9.
15.Wuester CD, Graf H, Ackermann H, Groth K, Kassubek J, Riecker A. Neural correlates of rate-dependent finger-tappingin Parkinson’s disease. Brain StructFunct 2014.
16.Widnell K. Pathophysiology of motor fluctuations in Parkinson’s disease. Mov Disorder 2005;20:17-22.
17.Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res 2003;148(2):238-46.
18.Lucas M, Chaves F, Teixeira S, Carvalho D, Peressutti C, Bittenocourt J, et al. Time perception impairs sensory-motor integration in Parkinson’s disease. Int Arch Med 2013;6(1):39-45.
19.de Lau LM, Breteler MM. Epidemiology of Parkinson''s disease. Lancet Neurol 2006;5(6):525-35.
20.Kasten M, Chade A, Tanner CM. Epidemiology of Parkinson''s disease. Handb Clin Neurol 2007;83:129-51.
21.Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;122:315-27.
22.Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 2008;9(11):856-69.
23.Tessa C, Lucetti C, Diciotti S, Paoli L, Cecchi P, Giannelli M, et al. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson’s disease: a motor fMRI study under controlled conditions. Neuroradiology 2012;54(3):261-8.
24.Brown MR, Vilis T, Everling S. Frontoparietal activation with preparation for antisaccades. J Neurophysiol. 2007;98(3):1751-62.
25.Nussbaum RL, Ellis CE. Alzheimer''s Disease and Parkinson''s Disease. N Engl J Med 2003;348(14):1356-64.
26.Morris ME, Watt JJ, Iansek R, Jolley D, Campbell D, Murphy AT, et al. Quantifying the profile and progression of impairments, activity, participation, and quality of life in people with Parkinson’s disease: protocol for prospective cohort study. BMC Geriatr 2009;9:2.
27.Chen CC, Chen TF, Hwang YC, Wen YR, Chiu YH, Wu CY, et al. Different prevalence rates of Parkinson’s disease in urban and rural areas: a population-based study in Taiwan. 2009; 33(4):350-7.
28.Horstink M, Tolosa E, Bonuccelli U, Deushl G, Friedman A, Kanovsky P, et al. Review of the therapeutic management of Parkinson''s disease. Report of a joint task force of the European Federation of Neurological Societies (EFNS) and the Movement Disorder Society-European Section (MDS-ES). Part II: late (complicated) Parkinson''s disease. Eur J Neurol. 2006;13(11):1186-1202.
29.Fox SH, Katzenschlager R, Lim SY, Ravina B, Seppi K, Coelho M, et al. The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2011;26(3):S2-41.
30.Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson''s disease. Clin Rehabil 2006;20(1):36-45.
31.Lee SJ, Yoo JY, Ryu JS, Park HK, Chung SJ. The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease. Am J Phys Med Rehabil 2012;91(1):2-11.
32.Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin Rehabil 2005;19(7):695-713.
33.Morris ME, Iansek R, Galna B. Gait festination and freezing in Parkinson’s disease: pathogenesis and rehabilitation. Mov Disord 2008;23(2):451-60.
34.Chuma T, Faruque Reza M, Ikoma K, Mano Y. Motor learning of hands with auditory cue in patients with Parkinson''s disease. J Neural Transm 2006;113(2):175-85.
35.Wu T, Wang L, Hallet M, Chen Y, Li k, Chan P, et al. Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage 2011;55(1):204-15.
36.Taniwaki T, Yoshiura T, Ogata K, et al. Disrupted connectivity of motor loops in Parkinson''s disease during self-initiated but not externally-triggered movements. Brain Res 2013;1512:45-59.
37.Goldberg G. Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci 1985;8:567-616.
38.Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain 2000;123(6):1216-28.
39.Kuruma H, Watanabe S, Ikeda Y, Senoo A, Kikuchi Y, Abo M, et al. Neural mechanism of self-initiated and externally triggered finger movements. J Phys TherSci 2007; 19: 103-9.
40.Halsband U, Ito N, Tanji J, Freund HJ. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 1993;116:243-66.
41.Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder, JR. Distributed neural systems underlying the timing of movements. J Neurosci 1997;17(14):5528-35.
42.Ivry RB, Keele SW. Timing functions of cerebellum. J Cogn Neurosci 1989;1(2):136-52.
43.Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005;8(11):1491-3.
44.Aoki T, Francis PR, Kinoshita H. Differences in the abilities of individual fingers during the performance of fast, repetitive tapping movements. Exp Brain Res 2003;152(2):270-80.
45.Shimoyama I, Ninchoji T, Uemura K. The finger-tapping test. A quantitative analysis. Arch Neurol 1990;47(6):681-4.
46.Uehara K, Morishita T, Kubota S, Funase K. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behav Brain Res 2013;240:33-45.
47.Repp BH. Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 2005;12(6):969-92.
48.Wing AM. Voluntary timing and brain function: an information processing approach. Brain Cogn 2002;48(1):7-30.
49.Yahalom G, Simon ES, Thorne R, Peretz C, Giladi N. Hand rhythmic tapping and timing in Parkinson’s disease. ParkinsonismRelatDisord 2004;10(3):143-8.
50.Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol2003;2(3):145-56.
51.Hallett M. Transcranial magnetic stimulation: a primer. Neuron2007;55(2):187-99.
52.Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN
committee. Clin Neurophysiol 2012;123(5):858-82.
53.Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994;91(2):79-92.
54.Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 2000;111:794-9.
55.Cantello R, Tarletti R, Civardi C. Transcranial magnetic stimulation and Parkinson''s disease. Brain Res Brain Res Rev 2002;38(3):309-27.
56.Cantello R. Applications of transcranial magnetic stimulation in movement disorders. J Clin Neurophusiol 2002;19(4):272-93.
57.Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology2013;80(19):1746-53.
58.Lou JS, Benice T, Kearns G, Sexton G, Nutt J. Levodopa normalizes exercise related cortico-motoneuron excitability abnormalities in Parkinson''s disease. Clin Neurophysiol 2003;114(5):930-7.
59.Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson''s disease. Ann Neurol 1995;37(2):181-8.
60.Harrington DL, Haaland KY, Hermanowicz N. Temporal processing in the basal ganglia. Neuropsychology. Jan 1998;12(1):3-12.
61.O''Boyle DJ, Freeman JS, Cody FW. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson''s disease. Brain : a journal of neurology. Feb 1996;119 ( Pt 1):51-70.
62.Chuma T, Faruque Reza M, Ikoma K, Mano Y. Motor learning of hands with auditory cue in patients with Parkinson''s disease. Journal of neural transmission. Feb 2006;113(2):175-185.
63.Arias P, Robles-Garcia V, Espinosa N, Corral Y, Cudeiro J. Validity of the finger tapping test in Parkinson''s disease, elderly and young healthy subjects: is there a role for central fatigue? Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. Oct 2012;123(10):2034-2041.
64.Bolbecker AR, Hong SL, Kent JS, et al. Paced finger-tapping abnormalities in bipolar disorder indicate timing dysfunction. Bipolar disorders. Feb 2011;13(1):99-110.
65.Roche R, Wilms-Floet AM, Clark JE, Whitall J. Auditory and visual information do not affect self-paced bilateral finger tapping in children with DCD. Human movement science. Jun 2011;30(3):658-671.
66.Ziemann U, Rothwell JC, Ridding MC. Interaction between intracortical inhibition and facilitation in human motor cortex. The Journal of physiology. Nov 1 1996;496:873-881.
67.Ziemann U. TMS and drugs. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. Aug 2004;115(8):1717-1729.
68.Ni Z, Bahl N, Gunraj CA, Mazzella F, Chen R. Increased motor cortical facilitation and decreased inhibition in Parkinson disease. Neurology. May 7 2013;80(19):1746-1753.
69.Ridding MC, Inzelberg R, Rothwell JC. Changes in excitability of motor cortical circuitry in patients with Parkinson''s disease. Annals of neurology. Feb 1995;37(2):181-188.
70.Floel A, Ellger T, Breitenstein C, Knecht S. Language perception activates the hand motor cortex: implications for motor theories of speech perception. The European journal of neuroscience. Aug 2003;18(3):704-708.
71.Sowman PF, Dueholm SS, Rasmussen JH, Mrachacz-Kersting N. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS. Frontiers in human neuroscience. 2014;8:398.
72.Cunic D, Roshan L, Khan FI, Lozano AM, Lang AE, Chen R. Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson''s disease. Neurology. Jun 11 2002;58(11):1665-1672.
73.Kuhn AA, Grosse P, Holtz K, Brown P, Meyer BU, Kupsch A. Patterns of abnormal motor cortex excitability in atypical parkinsonian syndromes. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. Aug 2004;115(8):1786-1795.
74.Lang AE, Marsden CD. Alpha methylparatyrosine and tetrabenazine in movement disorders. Clin Neuropharmacol. 1982;5(4):375.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top