跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游舒涵
研究生(外文):Shu-Han Yu
論文名稱:作業優先性對姿勢-上姿勢作業與大腦活動的影響:年齡效應
論文名稱(外文):The Effects of Task Prioritization on Postural-supraposturalTask and Cortical Activity: Age-related Differences
指導教授:黃正雅黃正雅引用關係
指導教授(外文):Cheng-Ya Huang
口試委員:吳瑞美周立偉陸哲駒張雅如
口試委員(外文):Ruey-Meei WuLi-Wei ChouJer-Junn LuhYa-Ju Chang
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:78
中文關鍵詞:作業優先性姿勢平衡雙重作業事件相關電位年齡效應
外文關鍵詞:task prioritizationpostural balancedual taskevent-related potentialage effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:姿勢-上姿勢作業為於維持身體平衡下,同時進行另一項動作或認知活動。由於注意力資源的有限性,適當且有效率的注意力配置,亦即作業優先性選擇,為獲得較佳姿勢-上姿勢作業表現的關鍵因素。此外,隨年齡增長,大腦注意力資源及其注意力配置的能力會逐漸下降,更加突顯作業優先性選擇的重要性。然而,目前關於姿勢-上姿勢控制的作業優先性(姿勢優先、上姿勢優先)探討及其相對應的神經機制仍尚未被仔細探討。因此,本研究的主要目的為探討年輕及老年族群,在使用不同作業優先策略下,對姿勢-上姿勢作業表現及大腦活動的影響。

研究方法:本研究共招募16位健康年輕受試者(平均年齡:24.4 ± 4.6歲)及16位健康年長受試者(平均年齡:69.1 ± 2.7歲)進行姿勢-上姿勢作業測試。實驗中受試者站立於平衡板上維持平衡(姿勢作業),並同時執行右手大拇指與食指的精準按壓動作(上姿勢作業)。姿勢作業之目標角度設為受試者前傾平衡板最大角度的一半,而上姿勢作業之目標力量設為受試者執行精準按壓最大力量數值的一半。實驗過程中須分別將主要注意力放置於姿勢平衡(姿勢優先)或精準按壓動作(上姿勢優先)來執行姿勢-上姿勢作業。實驗過程中記錄平衡板角度變化、精準按壓力量、右手第一背側指間肌肌電圖,並同步測量受試者之腦電圖。本研究之分析參數包含:姿勢作業角度誤差、精準按壓力量誤差、平衡板晃動之近似熵(approximate entropy)、精準按壓反應時間及腦電圖事件相關電位(P1, N1, P2)振幅。統計分析使用2 × 2混合變異數分析(2 × 2 mixed ANOVA)及最小顯著差異法(least significant difference)進行事後檢定,分析作業優先性與年齡效應對各行為表現參數及事件相關電位的影響。

結果與討論:相較於姿勢優先策略,於使用上姿勢優先策略時,年輕族群與老年族群皆會有較少的姿勢作業誤差,尤其老年族群於上姿勢優先策略時,同時會呈現較高的姿勢近似熵數值與較低的精準按壓力量誤差。於腦電圖事件相關電位振幅結果,在使用上姿勢優先策略時,年輕與老年族群的N1振幅皆較使用姿勢優先策略時小,反應上姿勢優先策略可降低姿勢作業所需之注意力資源的需求量,代表上姿勢優先策略是個較有效率的策略。此外,相較於年輕族群,老年族群於N1波與P2波之前,多呈現P1波,顯示老年族群於執行姿勢-上姿勢作業的準備初期會先進行感覺訊息的促進與整合。

結論:在執行姿勢-上姿勢作業時,上姿勢優先策略對健康年輕族群及老年族群皆是較佳的動作控制策略,不但能產生較高的作業精準度且有較佳的大腦注意力資源配置情形。

重要性與預期貢獻:本研究結果可提供健康族群,尤其是老年族群在執行姿勢-上姿勢作業時,一個較適當的動作控制策略,以提升整體動作表現,並可對姿勢-上姿勢控制的神經生理機制有進一步的瞭解。未來將進一步推展至神經疾患之患者,以期提供臨床治療時適當的訓練策略。

Background and Purpose: Postural-suprapostural task is defined as achievement of a motor or cognitive task performed simultaneously with successful postural control. Due to limited attentional resource, appropriate task prioritization is required for better performance during postural-suprapostural task, especially in elderly adults, who may have decreased attentional capacity and impaired attentional allocation. However, research on the suitable strategy of task prioritization (posture-first (PF) vs. supraposture-first (SF)) in younger and older adults is limited and lacks direct neural evidences. The purpose of this study was to investigate the effects of task-priority strategies on postural-suprapostural performance and its related cortical activity in younger and older populations.

Methods: Sixteen younger healthy and sixteen elderly healthy adults were recruited in this study. Each participant was requested to perform a force-matching precision grip task (suprapostural task) while maintaining balance on a stabilometer (postural task) with postural task or suprapostural task as the first-priority task. Both behavioral and cortical data, including task accuracy (postural error and force-matching error), postural ApEn (approximate entropy), reaction time of precision-grip, and event-related potentials (ERPs), including P1, N1, and P2 amplitudes, were recorded.

Results and Discussions: With SF strategy, less postural error was found in both younger and older groups. Furthermore, smaller force-matching error and larger postural ApEn were observed under the SF condition in the older group. ERP results revealed a task priority-dependent N1 response, which was smaller in the SF condition, indicating that SF is an efficient strategy for postural-suprapostural control. In addition, besides N1 and P2 waves, P1 positivity was observed only in the older adults, implying more facilitation of sensory processing was invested in the initial preparation phase of postural-suprapostural performance for older adults.

Conclusion: SF strategy may be the adequate strategy for both healthy younger and older adults, with better postural-suprapostural accuracy and more efficient attentional allocation than PF strategy. Further study is needed to be confident in this conclusion for patients with neurological disease, such as Parkinson’s disease.

Significance and Contribution: The study not only provided an optimal task-priority strategy for healthy adults, especially older adults, to increase their movement quality of postural-suprapostural task, but also gain a better insight to neural correlates of concurrent postural and motor-suprapostural tasks.


Verification Letter from the Oral Examination Committee I
Acknowledgement II
Chinese Abstract III
Abstract VI
List of Abbreviation XI
List of Figures XIII
List of Tables XV
Chapter 1 Introduction 1
1.1 Overview of Postural-suprapostural Task 1
1.1.1 Definition 1
1.1.2 Theoretical Framework of Postural-suprapostural Task 2
1.1.3 Age-related Models of Postural-suprapostural Performance 3
1.2 Related Literature 5
1.2.1 Task Prioritization on Postural-suprapostural Performance 5
1.2.2 Age Difference on Postural-suprapostural Performance 7
1.2.3 Limitation of Previous Study About Postural-suprapostural Task 8
1.2.4 Characterization of Cortical activity with Event-related Potentials 10
1.3 Rationales 12
1.4 Purpose and Significance 13
1.5 Hypothesis 14
Chapter 2 Methods 16
2.1 Participants 16
2.2 System Set-up and Data Recording 17
2.3 Experimental Conditions and Procedures 19
2.4 Data Analysis 22
2.4.1 Behavioral Data 22
2.4.2 ERPs Data 23
2.5 Statistical Analysis 24
Chapter 3 Results 26
3.1 Behavioral Performance 26
3.1.1 Error and Regularity of Postural Performance 26
3.1.2 Error and Reaction Time of Force-matching Task 27
3.2 ERP Amplitudes 29
3.2.1 Task Prioritization Effect on ERP Amplitudes 29
3.2.2 Age Effect on ERP Amplitudes 31
Chapter 4 Discussions 33
4.1 Improved Task Accuracy with SF Strategy 33
4.2 Facilitated P1 Wave in the Older Group in SF Condition 36
4.3 Age Effect on ERPs in Postural-suprapostural Tasks 39
4.4 Methodological Issues 40
Chapter 5 Conclusion 44
References 45
Figures 54
Tables 72
Appendices 74
Appendix 1 Mini Mental State Examination (MMSE) 74
Appendix 2 Approved document form the research ethics board at the National Taiwan University Clinical Trail Center 78


1. Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002;16:1-14.
2. Riley MA, Stoffregen TA, Grocki MJ, Turvey MT. Postural stabilization for the control of touching. Hum Mov Sci 1999;18:795-817.
3. Huxhold O, Li SC, Schmiedek F, Lindenberger U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull 2006;69:294-305.
4. Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ. Postural stabilization of looking. J Exp Psychol Hum Percept Perform 1999;25:1641-58.
5. Yogev-Seligmann G, Hausdorff JM, Giladi N. Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov Disord 2012;27:765-70.
6. Mitra S, Fraizer EV. Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Hum Mov Sci 2004;23:1-20.
7. Pellecchia GL. Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 2003;18:29-34.
8. Mitra S. Adaptive utilization of optical variables during postural and suprapostural dual-task performance: Comment on Stoffregen, Smart, Bardy, and Pagulayan (1999). J Exp Psychol Hum Percept Perform 2004;30:28-38.
9. Papegaaij S, Taube W, Baudry S, Otten E, Hortobágyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 2014;6:28.
10. Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012:223-45.
11. Brown LA, Sleik RJ, Polych MA, Gage WH. Is the prioritization of postural control altered in conditions of postural threat in younger and older adults? J Gerontol A Biol Sci Med Sci 2002;57:M785-M92.
12. Borel L, Alescio-Lautier B. Posture and cognition in the elderly: Interaction and contribution to the rehabilitation strategies. Neurophysiol Clin 2014;44:95-107.
13. Lacour M, Bernard-Demanze L, Dumitrescu M. Posture control, aging, and attention resources: Models and posture-analysis methods. Neurophysiol Clin 2008;38:411-21.
14. Mitra S. Postural costs of suprapostural task load. Hum Mov Sci 2003;22:253-70.
15. Bernard-Demanze L, Dumitrescu M, Jimeno P, Borel L, Lacour M. Age-related changes in posture control are differentially affected by postural and cognitive task complexity. Curr Aging Sci 2009;2:135-49.
16. Siu K-C, Woollacott MH. Attentional demands of postural control: The ability to selectively allocate information-processing resources. Gait Posture 2007;25:121-6.
17. Jehu DA, Desponts A, Paquet N, Lajoie Y. Prioritizing attention on a reaction time task improves postural control and reaction time. Int J Neurosci 2015;125:100-6.
18. Kelly VE, Eusterbrock AJ, Shumway-Cook A. Factors influencing dynamic prioritization during dual-task walking in healthy young adults. Gait Posture 2013;37:131-4.
19. Yogev-Seligmann G, Rotem-Galili Y, Mirelman A, Dickstein R, Giladi N, Hausdorff JM. How does explicit prioritization alter walking during dual-task performance? Effects of age and sex on gait speed and variability. Phys Ther 2010;90:177-86.
20. Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM. Effects of explicit prioritization on dual task walking in patients with Parkinson''s disease. Gait Posture 2012;35:641-6.
21. Doumas M, Krampe RT. Ecological relevance determines task priority in older adults’ multitasking. J Gerontol B Psychol Sci Soc Sci 2013;70(3):377-85.
22. Krampe RT, Schaefer S, Lindenberger U, Baltes PB. Lifespan changes in multi-tasking: Concurrent walking and memory search in children, young, and older adults. Gait Posture 2011;33:401-5.
23. Tsang PS. Ageing and attentional control. Q J Exp Psychol (Hove)2012;66: 1517-47.
24. Malcolm BR, Foxe JJ, Butler JS, De Sanctis P. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study. Neuroimage 2015;117:230-42.
25. Hollman JH, Kovash FM, Kubik JJ, Linbo RA. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007;26:113-9.
26. Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M. The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 1997;52A:M232-M40.
27. Siu K-C, Chou L-S, Mayr U, Donkelaar Pv, Woollacott MH. Does inability to allocate attention contribute to balance constraints during gait in older adults? J Gerontol A Biol Sci Med Sci 2008;63:1364-9.
28. Weeks D, Forget R, Mouchnino L, Gravel D, Bourbonnais D. Interaction between attention demanding motor and cognitive tasks and static postural stability. Gerontology 2003;49:225-32.
29. Bloem BR, Grimbergen YAM, van Dijk JG, Munneke M. The “posture second” strategy: A review of wrong priorities in Parkinson''s disease. J Neurol Sci 2006;248:196-204.
30. Hartley AA. Age differences in dual-task interference are localized to response-generation processes. Psychol Aging 2001;16:47-54.
31. Kasper RW, Cecotti H, Touryan J, Eckstein MP, Giesbrecht B. Isolating the neural mechanisms of interference during continuous multisensory dual-task performance. J Cogn Neurosci 2014;26:476-89.
32. Huang CY, Hwang IS. Behavioral data and neural correlates for postural prioritization and flexible resource allocation in concurrent postural and motor tasks. Hum Brain Mapp 2013;34:635-50.
33. De Sanctis P, Butler JS, Malcolm BR, Foxe JJ. Recalibration of inhibitory control systems during walking-related dual-task interference: A mobile brain-body imaging (MOBI) study. Neuroimage 2014;94:55-64.
34. Luck SJ. Introduction to the event-related potential technique (2nd edition). Cambridge, MA, USA: The MIT Press; 2014:71-100.
35. Nash AJ, Fernandez M. P300 and allocation of attention in dual-tasks. Int J Psychophysiol 1996;23:171-80.
36. Kida T, Kaneda T, Nishihira Y. Modulation of somatosensory processing in dual tasks: an event-related brain potential study. Exp Brain Res 2012;216:575-84.
37. Little CE, Woollacott M. EEG measures reveal dual-task interference in postural performance in young adults. Exp Brain Res 2015;233:27-37.
38. Vogel EK, and Steven J. Luck. The visual N1 component as an index of a discrimination process. Psychophysiology 2000;37:190-203.
39. Näätänen R. Attention and brain function. Hillsdale, N.J.: L. Erlbaum; 1992.
40. Navon D. Exploring two methods for estimating performance tradeoff. Bull. Psychon. Soc. 1990;28:155-7.
41. Szameitat AJ, Schubert T, Müller KU, Von Cramon DY. Localization of executive functions in dual-task performance with fMRI. Cognitive Neuroscience, Journal of 2002;14:1184-99.
42. Schubert T, Szameitat AJ. Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Brain Res Cogn Brain Res 2003;17:733-46.
43. Zanone PG, Monno A, Temprado JJ, Laurent M. Shared dynamics of attentional cost and pattern stability. Hum Mov Sci 2001;20:765-89.
44. Huang CY, Zhao CG, Hwang IS. Neural basis of postural focus effect on concurrent postural and motor tasks: Phase-locked electroencephalogram responses. Behav Brain Res 2014;274:95-107.
45. Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos 1995;5:110-7.
46. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 1991;88:2297-301.
47. Donker S, Roerdink M, Greven A, Beek P. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp Brain Res 2007;181:1-11.
48. Burcal CJ, Drabik EC, Wikstrom EA. The effect of instructions on postural–suprapostural interactions in three working memory tasks. Gait Posture 2014;40:310-4.
49. Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A 2001;54:1143-54.
50. Boisgontier MP, Beets IAM, Duysens J, Nieuwboer A, Krampe RT, Swinnen SP. Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neurosci Biobehav Rev 2013;37:1824-37.
51. Kuczyński M, Szymańska M, Bieć E. Dual-task effect on postural control in high-level competitive dancers. J Sports Sci 2011;29:539-45.
52. Hillyard SA, Vogel EK, Luck SJ. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci 1998;353:1257-70.
53. Luck SJ, Heinze HJ, Mangun GR, Hillyard SA. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 1990;75:528-42.
54. Heinze HJ, Luck SJ, Mangun GR, Hillyard SA. Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 1990;75:511-27.
55. Magill RA. Motor learning and control : concepts and applications. New York: McGraw-Hill; 2011:198-9.
56. Hülsdünker T, Mierau A, Neeb C, Kleinöder H, Strüder HK. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci Lett 2015;592:1-5.
57. Jones L. Force matching by patients with unilateral focal cerebral lesions. Neuropsychologia 1989;27:1153-63.
58. Kida T, Nishihira Y, Hatta A, et al. Resource allocation and somatosensory P300 amplitude during dual task: effects of tracking speed and predictability of tracking direction. Clin Neurophysiol 2004;115:2616-28.
59. Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 2006;7:160-6.
60. Lijffijt M, Lane SD, Moeller FG, Steinberg JL, Swann AC. Trait impulsivity and increased pre-attentional sensitivity to intense stimuli in bipolar disorder and controls. J Psychiatr Res 2015;60:73-80.
61. Latash ML. Neurophysiological basis of movement. Champaign, IL: Human Kinetics; 2008:279-87.
62. Slifkin AB, Newell KM. Noise, information transmission, and force variability. J Exp Psychol Hum Percept Perform 1999;25:837-51.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top