跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 08:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱廷
研究生(外文):Yu-Ting Chen
論文名稱:從骨密度、植體設計和手術技巧來探討牙科植體放置過程中產生的熱影響
論文名稱(外文):Heat generation during implant placement: effect of bone density,implant design and surgical technique
指導教授:林立德林立德引用關係
指導教授(外文):Li-Deh Lin
口試委員:王東美洪志遠
口試委員(外文):Tong-Mei Wang
口試日期:2015-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:104
中文關鍵詞:植體置入摩擦熱熱電偶骨密度植體設計植體置入轉速
外文關鍵詞:implant insertionfriction heatbone densityimplant designinsertion speedthermal couple
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
實驗目的
要達到成功的骨整合,首先在手術中要避免產生熱傷害,造成骨壞死。在之前的研究中,鑽針鑽孔對於周圍骨頭溫度的變化已經有廣泛的研究,而另一個造成溫度變化的來源是植體轉入的摩擦熱,植體轉入的摩擦熱受到骨質、植體設計、手術方法等等因素影響,而迷你植體中廠商有建議的植體轉入速度來避免過熱。因此本篇文章嘗試去探討在不同的骨質、植體設計和植體植入轉速對於植體置入時周圍骨塊不同深度溫度變化的影響。
實驗材料與方法
以SawboneR test block做為實驗材料,並選擇不同的密度(10、20pcf分別代表0.16、0.32g/cc)來模擬不同骨密度的海綿骨,並以50pcf(0.80 g/cc)之0~1mm的薄層覆蓋在test block上以模擬不同厚度之皮質骨。測試用植體則是選用NobelActive™ implant (Nobel Biocare, Sweden),長度為10mm,直徑為4.3mm,和Branemark System™ MKIV TiUnite implant (Nobel Biocare, Sweden),長度為10mm,直徑為4mm。
將testing block(15*30mm in diameter)固定在夾具上後,參照植體廠商所建議的鑽孔規則,在laminated block如1+10pcf骨塊中,NobelActive植體預備分別用直徑2mm的twist drill、2.4/2.8mm twist drill、3.2mm twist drill鑽入10mm的深度,MKIV植體預備分別用直徑2mm的twist drill、2.4/2.8mm twist drill、3mm twist drill加上countersink。
在沒有laminated block如10pcf和20pcf骨塊中,NobelActive植體預備分別用直徑2mm的twist drill、2.4/2.8mm twist drill鑽入10mm的深度,MKIV植體預備分別用直徑2mm的twist drill、2.4/2.8mm twist drill鑽入10mm的深度。
距離植體邊緣0.5mm處用1.5mm鑽針鑽與植體位置平行的1mm、5mm、9mm深度,作為放置熱電偶的孔洞,用水浴機(Almore International Inc., USA)模擬顎骨體溫,溫度設定範圍29℃±2℃,每一組合情況皆測試六次,而植體植入過程中,溫度數據擷取頻率為5Hz,將得到溫度最溫度變化曲線圖和植體植入時間,並算出溫度最高點和最低點的差距
實驗結果
在MKIV植體中,不管在哪種測試骨塊和置入轉速,溫度變化最高量在5mm,從植體置入轉速來看,隨著轉速增加,溫度變化量無顯著差異。而從骨塊的影響來看,10pcf、20pcf、1+10pcf,兩兩之間都不管在哪個深度溫度變化都有顯著性著差異,所以在1+10pcf在1mm、5mm、9mm比起其他骨塊都會最高溫度變化量。
在NA植體中,不管在哪種測試骨塊和置入轉速,溫度變化最高量大多出現在5mm。而植體置入轉速對於溫度變化量無顯著影響。從骨塊的影響來看,10pcf和20pcf相比,不管在哪個深度,在20pcf溫度變化量都有顯著性的增加,而在將1+10pcf with wrench組和20pcf相比,在1mm深度溫度變化量顯著增加。
在MKIV和NA植體比較中,拿出20pcf骨塊的情況相比,因在20pcf骨塊中兩者的最終鑽針是相同的,兩者之間不管在1mm、5mm、9mm,在MKIV都有顯著性較多的變化量,其可能的原因是NA在螺紋深度較深、切削能力較強,較容易通過緻密骨塊,較少的能量轉變成熱。
結論
在本實驗測試不同植體、骨塊、植體置入轉速對植體置入摩擦熱的影響,發現隨著骨質密度增加,溫度變化量增加,而隨者置入轉速的增加,溫度變化量不受影響,而植體設計對於溫度變化量會有影響,而怎麼樣的設計會如何影響,需要更進一步的研究來釐清。


Research goal
The purpose of this study was to investigate the effects of bone density, implant design, and implant insertion speed on the heat generated during implant insertion.
Material and method
Three thermal couples (Advance Instrument Inc., Taiwan) was placed in 1mm,5mm,9mm depth respectively, and the temperature change was measured during implant placement.
<Artificial test block>
Low to high density cancellous bone without cortical coverage were simulated with 10 pounds per cubic foot (pcf) (density: 0.16 g/cc), 20 pcf (0.32 g/cc) polyurethane foam test blocks. Cancellous bone with a thin layer of cortical bone were simulated with laminated test blocks using a combination of 0 or 1 mm 50 pcf (density: 0.80 g/cc) polyurethane layer. Inserting two different implants were NobelActive™ implant (Nobel Biocare, Sweden) with 10mm in length and 4.3mm in diameter and Branemark System™ MKIV TiUnite implant (Nobel Biocare,Sweden) with 10mm in length and 4mm in diameter。
Three paralleled channels for thermal couples were drilled around the implant site. The channels were 0.5mm away from the planned implant site. The bone block was socked in a water bath (Almore International Inc., USA) which was maintained in 29±2℃.Then, implant was placed by motor (NSK, Japan) and the temperature change was recorded during the implant placement by16 channel thermal meter (VTI Instruments Corp, U.S.A).
Result:
In MKIV groups, there were no statistically difference on temperature change when different insertion speeds were used. However, with increasing bone block density, the temperature change were increased. The maximum temperature was increased in 1+10pcf bone block, it show that the laminated layer has significantly influence on the friction heat. Moreover, No matter what the bone density and insertion speed were used, the temperature change in 5mm depth were more than in 1mm depth and 9mm depth.
In NA groups, It was also that no statistically difference between the different insertion speed. With the different bone density on 10pcf and 20pcf , It is statistically difference on temperature change on 1mm,5mm,9mm. Moreover, when 20pcf bone block compared with 1+10pcf bone block, it is statistically increased on temperature change in 1mm depth.
When comparing NA with MKIV in 20pcf bone block, the MKIV groups had more friction heat generation on 1mm,5mm and 9mm depth , and it is statistically difference. It mean that implant design had influence on the temperature change

Conclusion:
In the present study, the factors that had influence on temperature change during implant insertion were the bone density and implant design. It is no statistically difference with different implant insertion speed.


目錄
口試委員會審定書 I
中文摘要 III
英文摘要 VI
目錄 IX
圖目錄 X
表目錄 XIII
Chapter 1 緒論 1
1.1 引言 1
1.2.1 骨頭對熱的生理變化與溫度測量方法 3
1.2.2 植體置入過程的熱效應 11
1.2.3 評估植體穩定度的方法分析與骨質對植入扭力的影響 13
Chapter 2 研究目的 17
Chapter 3 實驗方法及程序 18
3.1 研究假說 18
3.2 實驗材料及步驟 18
3.3 統計分析 21
Chapter 4 實驗結果 22
Chapter 5 討論 24
5.1 骨塊的選擇與實驗環境設計 24
5.2 植體置入時溫度變化的影響因素 26
Chapter 6 結論 32
參考文獻 100



Abouzgia MB, James DF (1996). Temperature rise during drilling through bone. The International Journal of Oral & Maxillofacial Implants 12(3):342-353.

Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010). The effect of thread pattern upon implant osseointegration. Clinical Oral Implants Research 21(2):129-136.

Aerssens J, Boonen S, Lowet G, Dequeker J (1998). Interspecies differences in bone composition, density, and quality: potential Implications for in vivo bone research 1. Endocrinology 139(2):663-670.

Agren E, Arwili T (1968). High-speed or conventional dental equipment for the removal of bone in oral surgery: III. A histologic and microradiographic study on bone repair in the rabbit. Acta Odontologica Scandinavica 26(3):223-246.

Agren E (1963). High-speed or conventional dental engines for the removal of bone in oral surgery: I. A study of the reactions following removal of bilateral impacted lower third molars. Acta Odontologica Scandinavica 21(6):585-625.

Albrektsson T (1980). The healing of autologous bone grafts after varying degrees of surgical trauma. A microscopic and histochemical study in the rabbit. Journal of Bone & Joint Surgery, British Volume 62(3):403-410.

Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D et al. (2012). Cortical bone drilling and thermal osteonecrosis. Clinical Biomechanics 27(4):313-325.

Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P (2003). Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clinical Oral Implants Research 14(5):616-620.

Beer A, Gahleitner A, Holm A, Birkfellner W, Homolka P (2007). Adapted preparation technique for screw‐type implants: explorative in vitro pilot study in a porcine bone model. Clinical Oral Implants Research 18(1):103-107.

Berman AT, J Spence R, Yanicko DR, Sih GC, Zimmerman M (1984). Thermally induced bone necrosis in rabbits: relation to implant failure in humans. Clinical Orthopaedics and Related Research 186(284-292.

Bischof M, Nedir R, Szmukler‐Moncler S, Bernard JP, Samson J (2004). Implant stability measurement of delayed and immediately loaded implants during healing. Clinical Oral Implants Research 15(5):529-539.

Biyikli S, Modest MF, Tarr R (1986). Measurements of thermal properties for human femora. Journal of Biomedical Materials Research 20(9):1335-1345.

Bolland MJ, Hood G, Bastin ST, King AR, Grey A (2004). Bilateral femoral head osteonecrosis after septic shock and multiorgan failure. Journal of Bone and Mineral Research 19(3):517-520.

Branemark P, Breine U, Adell R, Hanson B, Lindstrom J, Ohlsson A (1969). Intra-osseous anchorage of dental prostheses. Scand J Plast Reconstr Surg 3(81):100.

Branemark P, Zarb GA, Albrektsson T, Rosen HM (1986). Tissue-integrated prostheses. osseointegration in clinical dentistry. Plastic and Reconstructive Surgery 77(3):496-497.

Brisman DL (1995). The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. The International Journal of Oral & Maxillofacial Implants 11(1):35-37.

Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007). Simulation of tissue differentiation in a scaffold as a function of porosity, Young''s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36):5544-5554.

Checa S, Prendergast PJ (2010). Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. Journal of Biomechanics 43(5):961-968.

Chong L, Khocht A, Suzuki JB, Gaughan J (2009). Effect of implant design on initial stability of tapered implants. Journal of Oral Implantology 35(3):130-135.

Cordioli G, Majzoub Z (1996). Heat generation during implant site preparation: an in vitro study. The International Journal of Oral & Maxillofacial Implants 12(2):186-193.

Davidson SR, James DF (2000). Measurement of thermal conductivity of bovine cortical bone. Medical Engineering & Physics 22(10):741-747.

Devlin H, Horner K, Ledgerton D (1998). A comparison of maxillary and mandibular bone mineral densities. The Journal of Prosthetic Dentistry 79(3):323-327.

Eriksson A, Albrektsson T (1983). Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. The Journal of Prosthetic Dentistry 50(1):101-107.

Eriksson R, Albrektsson T (1984). The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. Journal of Oral and Maxillofacial surgery 42(11):705-711.

Eriksson R, Adell R (1986). Temperatures during drilling for the placement of implants using the osseointegration technique. Journal of Oral and Maxillofacial Surgery 44(1):4-7.

Esposito M, Hirsch JM, Lekholm U, Thomsen P (1998). Biological factors contributing to failures of osseointegrated oral implants,(II). Etiopathogenesis. European Journal of Oral Sciences 106(3):721-764.

Friberg B, Sennerby L, Meredith N, Lekholm U (1999). A comparison between cutting torque and resonance frequency measurements of maxillary implants. International Journal of Oral & Maxillofacial Surgery 28(4):297-303.

Geng J, Ma Q, Xu W, Tan K, Liu G (2004a). Finite element analysis of four thread‐form configurations in a stepped screw implant. Journal of Oral Rehabilitation 31(3):233-239.

Geng J, Xu W, Tan K, Liu G (2004b). Finite element analysis of an osseointegrated stepped screw dental implant. Journal of Oral Implantology 30(4):223-233.

Haider R, Watzek G, Plenk H (1993). Effects of drill cooling and bone structure on IMZ implant fixation. International Journal of Oral and Maxillofacial Implants 8(83-83.

Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M et al. (2002). Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study1. Radiology.

Horch H, Keiditsch E (1980). Morphological findings on the tissue lesion and bone regeneration after laser osteotomy. Deutsche Zahnarztliche Zeitschrift 35(1):22.

Huang H-L, Tu M-G, Fuh L-J, Chen Y-C, Wu C-L, Chen S-I et al. (2010). Effects of elasticity and structure of trabecular bone on the primary stability of dental implants. Journal of Medical and Biological Engineering 30(2):85-89.

Huiskes R (1980). Some fundamental aspects of human joint replacement: analyses of stresses and heat conduction in bone-prosthesis structures. Acta Orthopaedica 51(S185):3-208.

Ikumi N, Tsutsumi S (2004). Assessment of correlation between computerized tomography values of the bone and cutting torque values at implant placement: a clinical study. The International Journal of Oral & Maxillofacial Implants 20(2):253-260.

Johansson B, Back T, Hirsch JM (2004). Cutting torque measurements in conjunction with implant placement in grafted and nongrafted maxillas as an objective evaluation of bone density: a possible method for identifying early implant failures? Clinical Implant Dentistry and Related Research 6(1):9-15.

Kalidindi V (2004). Optimization of drill design and coolant systems during dental implant surgery.

Karaca F, Aksakal B, Kom M (2011). Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Medical Engineering & Physics 33(10):1221-1227.

Karmani S (2006). The thermal properties of bone and the effects of surgical intervention. Current Orthopaedics 20(1):52-58.

Kirschner H, Meyer W (1975). Entwicklung einer Innenkuhlung fur chirurgische Bohrer. Dtsch Zahnarztl 30):436-438.

Klemetti E, Vainio P (1993). Effect of bone mineral density in skeleton and mandible on extraction of teeth and clinical alveolar height. The Journal of Prosthetic Dentistry 70(1):21-25.

Lansari A (1991). Effects of torque and heat generation during direct cortical trochar tipped pin insertion. Annals of Biomedical Engineering 19(6411-6416.

Ludewig R (1972). Temperaturmessungen beim Knochensagen.

Lundskog J (1971). Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scandinavian Journal of Plastic and Reconstructive Surgery 9(1-80.

Markovic A, Misic T, Milicic B, Calvo-Guirado JL, Aleksic Z, Ethinic A (2013). Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design. Clinical Oral Implants Research 24(7):798-805.

Markovic A, Misic T, Mancic D, Jovanovic I, Scepanovic M, Jezdic Z (2014). Real-time thermographic analysis of low-density bone during implant placement: a randomized parallel-group clinical study comparing lateral condensation with bone drilling surgical technique. Clinical Oral Implants Research 25(8):910-918.

Marković A, Calvo‐Guirado JL, Lazić Z, Gomez‐Moreno G, Ćalasan D, Guardia J et al. (2013). Evaluation of primary stability of self‐tapping and non‐self‐tapping dental implants. A 12‐week clinical study. Clinical Implant Dentistry and Related Research 15(3):341-349.

Matsuoka M, Motoyoshi M, Sakaguchi M, Shinohara A, Shigeede T, Saito Y et al. (2011). Friction heat during self-drilling of an orthodontic miniscrew. International Journal of Oral and Maxillofacial Surgery 40(2):191-194.

Matthews LS, Hirsch C (1972). Temperatures measured in human cortical bone when drilling. The Journal of Bone & Joint Surgery 54(2):297-308.

Misch CE (1999). Contemporary implant dentistry. Implant Dentistry 8(1):90.

Moss RW (1964). Histopathologic reaction of bone to surgical cutting. Oral Surgery, Oral Medicine, Oral Pathology 17(3):405-414.

Niimil A, Ozekil K, Uedal M, Nakayama B (1997). A comparative study of removal torque of endosseous implants in the fibula, iliac crest and scapula of cadavers: preliminary report. Clinical Oral Implants Research 8(4):286-289.

Orenstein IH, Tarnow DP, Morris HF, Ochi S (1998). Factors affecting implant mobility at placement and integration of mobile implants at uncovering. Journal of Periodontology 69(12):1404-1412.

Peterson LT (1952). Principles of internal fixation with plates and screws. American Medical Association Archives of Surgery 64(3):345-354.

Rhinelander FW, Nelson CL, Stewart RD, Stewart CL (1979). Experimental reaming of the proximal femur and acrylic cement implantation: vascular and histologic effects. Clinical Orthopaedics and Related Research 141(74-89.

Sumer M, Keskiner I, Mercan U, Misir F, Cankaya S (2014). Assessment of heat generation during implant insertion. Journal of Prosthetic Dentistry 112(3):522-525.

Tabassum A, Meijer GJ, Wolke JG, Jansen JA (2010). Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clinical Oral Implants Research 21(2):213-220.

Tehemar SH (1999). Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations. The International Journal of Oral & Maxillofacial Implants 14(1):127-136.

Van Staden RC, Guan H, Johnson NW, Loo YC, Meredith N (2008). Step‐wise analysis of the dental implant insertion process using the finite element technique. Clinical Oral Implants Research 19(3):303-313.

Wachter R, Stoll P (1991). Increase of temperature during osteotomy.: In vitro and in vivo investigations. International Journal of Oral and Maxillofacial Surgery 20(4):245-249.

Wang H-L, Ormianer Z, Palti A, Perel ML, Trisi P, Sammartino G (2006). Consensus conference on immediate loading: the single tooth and partial edentulous areas. Implant Dentistry 15(4):324-333.

Wang T-M (2014). 從工程資訊學到實驗來探討提高植牙可靠性, 穩定性與存活率的技術創新. 臺灣大學臨床牙醫學研究所學位論文:1-61.

Weinlaender M (1991). Bone growth around dental implants. Dental clinics of North America 35(3):585-601.

Yacker MJ, Klein M (1995). The effect of irrigation on osteotomy depth and bur diameter. The International Journal of Oral & Maxillofacial Implants 11(5):634-638.

Zelenov E (1986). Experimental investigation of the thermophysical properties of compact bone. Mechanics of Composite Materials 21(6):759-762.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文