(54.236.58.220) 您好!臺灣時間:2021/03/08 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:Addisu Getachew Destaye
研究生(外文):Addisu Getachew Destaye
論文名稱:Antimicrobial Electrospun Polyvinyl Alcohol (PVA) Nanofibrous Mat with Incorporating Glucose Oxidase, Silve Nanoparticles, and N-Halamines Modification
論文名稱(外文):Antimicrobial Electrospun Polyvinyl Alcohol (PVA) Nanofibrous Mat with Incorporating Glucose Oxidase, Silve Nanoparticles, and N-Halamines Modification
指導教授:李振綱李振綱引用關係
指導教授(外文):Cheng-Kang Lee
口試委員:李振綱
口試委員(外文):Cheng-Kang Lee
口試日期:2014-01-16
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:132
外文關鍵詞:Nanofibrous matPolyvinyl alcoholGlucose oxidaseN-halaminesElectrospinningAntimicrobialVapor cross-linkingGlutaraldehydeNanofiberSilver nanoparticlesGlucoseEpsilon polylysine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Nanomaterials are at the forefront of rapidly growing field of nanotechnology. Due to their nanoscale size, nanomaterials possess extremely high surface area to volume ratio. In this dissertation, antimicrobial nanofibers were made from electrospun polyvinyl alcohol (PVA) solutions. PVA is a very hydrophilic, biocompatible, and non-toxic synthetic polymer with excellent chemical, thermal, and mechanical properties that can easily be electrospun in to PVA nanofibrous mats. While these properties are desirable properties for encapsulating biological active proteins for various application, its further use in aqueous environment is limited by its solubility. Hence, in this study, PVA nanofibrous mats consisted of nanofibers (200 – 400 nm in diameter) were prepared via electrospinning and subjected to glutaraldehyde (GA: 0.5, 1.0, 2.0, and 2.56 M) vapor phase cross-linking at room temperature. The cross-linking not only resulted in a water-insoluble nanofibrous mats but also generated an excess amount of unreacted aldehyde functional groups (2.16 nmol/mm2 and 2.24 nmol/mm2) that were further used in in-situ reduction of silver salts in to silver nanoparticles (4.60 % for 2.0 M GA and 5.76 % for 2.56 M GA cross-linked mats) with average particle size of 20-46 nm. The unreacted end of the aldehyde groups (247 μmole/mm2) were also used for grafting nitrogen containing functional groups such as ε-polylysine that was then transformed in to rechargeable (97% rechargeability) N-halamines by bleaching (10% vol NaOCl). Glucose oxidase (GOx: 2.0%) and glucose (Glu: 1, 3, and 5.35 mg/mL) were also separately encapsulated via simultaneous electrospinning of PVA/GOx and PVA/Glu (4:1 volume ratio) dopes to form a self-sustained and capable of killing catalase positive bacteria PVA nanofibrous mat. The antimicrobial activity of the mat resulted from the hydrogen peroxide (H2O2) (150 μM) generated by reacting glucose with GOx. All the PVA nanofibrous mats prepared have shown excellent antimicrobial activity against both Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus) bacteria and have the ability to kill more than 99% of the bacteria. Therefore, these nanofibrous materials may have potential applications as versatile antimicrobial materials in the field of health, food, biomedical industries, and textile.
Abstract iii
Acknowledgment v
Table of Contents vii
Abbreviations xii
List of Tables xiv
List of Figures xv
List of Schemes xix
Chapter I 1
Introduction 1
1.1. Background 1
1.2. Polymer nanofibers 2
1.3. Electrospinning 2
1.3.1. Electrospinning process 4
1.3.2. Parameters affecting electrospinning process 5
1.3.2.1. Polymer solution parameters 5
1.3.2.2. Process parameters 7
1.4. Polyvinyl alcohol (PVA) 9
1.5. Cross-linking techniques 10
1.5.1. Glutaraldehyde (GA) cross-linking 10
1.5.2. Photo cross-linking 11
1.5.3. Heat cross-linking 11
1.6. Antimicrobial Activity 11
1.6.1. Silver 11
1.6.2. N-Halamines 12
1.6.3. Antimicrobial Enzymes 13
1.6.3.1. Glucose Oxidase (GOx) 13
1.7. Motivation and Objectives 14
1.8. Structure of the dissertation 15
Chapter II 17
Experimental Section 17
(Characterization techniques, Materials and Methods) 17
2.1. Introduction 17
2.2. Characterization techniques 17
2.2.1. FT-IR Spectroscopy 18
2.2.2. UV-Vis spectroscopy 19
2.2.3. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectrometry (EDS) 21
2.2.4. Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES) 22
2.2.5. Mechanical testing (stress-strain test) 23
2.3. Materials and Methods 25
2.3.1. Materials 25
2.3.2. Methods 26
2.3.2.1. Glutaraldehyde Vapor Cross-linked Nanofibrous PVA Mat with Silver Nanoparticles 26
2.3.2.1.1. Electrospinning of PVA 26
2.3.2.1.5. Antimicrobial activity 29
2.3.2.2. Rechargeable N-Halamine Antimicrobial PVA Nanofibrous Mat Based on Grafted ε-Polylysine 30
2.3.2.2.1. Preparation of nanofibrous mat 30
2.3.2.2.2. Vapor cross-linking 30
2.3.2.2.3. Grafting ε-Polylysine 30
2.3.2.2.4. N-Halamine formation (chlorination) 30
2.3.2.2.5. Characterization of ε-PLL grafted N-halamine nanofibrous mat 31
2.3.2.2.6. Antimicrobial activity of the N-halamine nanofibrous mat 32
2.3.2.2.7. Rechargeability of the N-halamine nanofibrous mat 32
2.3.2.3. Self-sustained Antimicrobial PVA Nanofibrous Mat Based on Electrospun Encapsulated Glucose Oxidase 33
2.3.2.3.1. GOx encapsulation: Simultaneous electrospinning of PVA/GOx and PVA/Glucose (Glu) 33
2.3.2.3.2. GA vapor cross-linking 34
2.3.2.3.3. Hydrogen peroxide generation and detection 34
2.3.2.3.4. Characterization 35
2.3.2.3.5. Antimicrobial activity of the GOx encapsulated PVA nanofibrous mat 35
2.4. Summary 36
Chapter III 37
Glutaraldehyde Vapor Cross-linked Nanofibrous PVA Mat with Silver Nanoparticles 37
3.1. Introduction 37
3.2. Results and discussion 40
3.2.1 Vapor phase cross-linking reaction of GA 40
3.2.2 In-situ formation of silver nanoparticles 49
3.2.3 Antimicrobial activity of the Ag nanoparticles immobilized nanofibrous mat 53
3.2.3.1 Clear inhibition zone test 53
3.3 Summary 55
Chapter IV 56
Rechargeable N-Halamine Antimicrobial PVA Nanofibrous mat Based on Grafted ε-Polylysine 56
4.1. Introduction 56
4.2. Results and discussion 58
4.2.1 Electrospinning and cross-linking 58
4.2.2 ε-Polylysine Grafting (ε-PLL) 60
4.2.3 N-Halamine formation (Chlorination) 63
4.2.4 Antimicrobial activity of N-Halamine nanofibrous mat 65
4.2.4.1 Clear zone inhibition test 65
4.2.4.2 Colonies viability test 66
4.2.5 Rechargeability 67
4.3 Summary 68
Chapter V 69
Self-sustained Antimicrobial PVA Nanofibrous Mat Based on Electrospun Encapsulated Glucose Oxidase 69
5.1. Introduction 69
5.2. Results and discussion 72
5.2.1. GOx encapsulation 72
5.2.2. Generation and detection of hydrogen peroxide 74
5.2.3. Antimicrobial activity of GOx encapsulated PVA nanofibrous mat 76
5.2.3.1. Clear inhibition zone test 76
5.2.3.2. Viable cell counting (CFU) 79
5.3. Summary 81
Chapter VI 82
Conclusion and future insight 82
6.1. Conclusion 82
6.2. Future insight 84
References 85
Appendix 107
(1)Rogers, B.; Adams, J.; Pennathur, S., Big Picturse and Principles of the Small World. In Nanotechnology: Understanding Small Systems, CRC Press: 2007; Chapter 1, pp 1-28.
(2)Ashby, M. F.; Ferreira, P. J.; Schodek, D. L., Nanomaterials and Nanotechnologies: An Overview. In Nanomaterials, Nanotechnologies and Design, Schodek, D. L.; Ashby, M. F.; Ferreira, P. J., Eds. Butterworth-Heinemann: Boston, 2009; Chapter 1, pp 1-16.
(3)Zhang, L.; Webster, T. J. Nanotechnology and Nanomaterials: Promises for Improved Tissue Regeneration. Nano Today 2009, 4, 66-80.
(4)Ramakrishna, S.; Fujihara, K.; Teo, W.-E.; Lim, T.-C.; Ma, Z., An Introduction to Electrospinning and Nanofibers. World Scientific: Singapore, 2005.
(5)Ramsden, J. J., What is Nanotechnology? In Nanotechnology: An Introduction, Ramsden, J. J., Ed. William Andrew Publishing: Oxford, 2011; Chapter 1, pp 1-14.
(6)Salata, O. V. Applications of Nanoparticles in Biology And Medicine. J. Nanobiotechnol. 2004, 2, 3-3.
(7)Arora, S.; Rajwade, J. M.; Paknikar, K. M. Nanotoxicology and In Vitro Studies: The Need of The Hour. Toxicol. Appl. Pharmacol. 2012, 258, 151-65.
(8)Gao, J.; Xu, B. Applications of Nanomaterials Inside Cells. Nano Today 2009, 4, 37-51.
(9)Harrison, B. S.; Atala, A. Carbon Nanotube Applications for Tissue Engineering. Biomaterials 2007, 28, 344-53.
(10)Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun Nanofibers in Energy and Environmental Applications. Energy Environ. Sci. 2008, 1, 205.
(11)Frenot, A.; Chronakis, I. S. Polymer Nanofibers Assembled by Electrospinning. Curr. Opin. Colloid Interface Sci. 2003, 8, 64-75.
(12)Gouma, P.; Gouma, P.-I., Electrospinning- A Novel Nanomanufacturing Technique for Hybride Nanofibers and Their Non-Woven Mats. In Nanomaterials for Chemical Sensors and Biotechnology, Pan Stanford Publishing: 2009; Chapter 4, pp 69-83.
(13)Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557-69.
(14)Bhardwaj, N.; Kundu, S. C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325-47.
(15)Doshi, J.; Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrostat. 1995, 35, 151-60.
(16)Sill, T. J.; von Recum, H. A. Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989-06.
(17)Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151-70.
(18)Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89-R106.
(19)Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223-53.
(20)Kowalczyk, T.; Nowicka, A.; Elbaum, D.; Kowalewski, T. A. Electrospinning of Bovine Serum Albumin. Optimization and the Use for Production of Biosensors. Biomacromolecules 2008, 9, 2087-90.
(21)Choktaweesap, N.; Arayanarakul, K.; Aht-ong, D.; Meechaisue, C.; Supaphol, P. Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters. Polym. J. 2007, 39, 622-31.
(22)Sahay, R.; Thavasi, V.; Ramakrishna, S. Design Modifications in Electrospinning Setup for Advanced Applications. J. Nanomater. 2011, 2011, 1-17.
(23)Andrady, A. L., Introduction. In Science and Technology of Polymer Nanofibers, John Wiley & Sons: New Jersey, 2008; Chapter 1, pp 1- 26.
(24)Ramesh Kumar, P.; Khan, N.; Vivekanandhan, S.; Satyanarayana, N.; Mohanty, A. K.; Misra, M. Nanofibers: Effective Generation by Electrospinning and Their Applications. J. Nanosci. Nanotechnol. 2012, 12, 1-25.
(25)Chaouat, M.; Le Visage, C.; Baille, W. E.; Escoubet, B.; Chaubet, F.; Mateescu, M. A.; Letourneur, D. A Novel Cross-linked Poly(Vinyl Alcohol) (PVA) for Vascular Grafts. Adv. Funct. Mater. 2008, 18, 2855-61.
(26)Kadri, N. A.; Raha, M. G.; Pingguan-Murphy, B. Polyvinyl Alcohol as a Viable Membrane in Artificial Tissue Design and Development. Clinics 2011, 66, 1489-93.
(27)Taepaiboon, P.; Rungsardthong, U.; Supaphol, P. Drug-Loaded Electrospun Mats of Poly(Vinyl Alcohol) Fibres and Their Release Characteristics of Four Model Drugs. Nanotechnology 2006, 17, 2317-29.
(28)Koski, A.; Yim, K.; Shivkumar, S. Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning. Mater. Lett. 2004, 58, 493-97.
(29)Ding, B.; Kim, H.-Y.; Lee, S.-C.; Shao, C.-L.; Lee, D.-R.; Park, S.-J.; Kwag, G.-B.; Choi, K.-J. Preparation and Characterization of A Nanoscale Poly(Vinyl Alcohol) Fiber Aggregate Produced by an Electrospinning Method. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1261-68.
(30)Supaphol, P.; Chuangchote, S. On the Electrospinning of Poly(Vinyl Alcohol) Nanofiber Mats: A Revisit. J. Appl. Polym. Sci. 2008, 108, 969-78.
(31)Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on Morphology of Electrospun Poly(Vinyl Alcohol) Mats. Eur. Polym. J. 2005, 41, 423-32.
(32)Jia, Y.-T.; Gong, J.; Gu, X.-H.; Kim, H.-Y.; Dong, J.; Shen, X.-Y. Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 2007, 67, 403-409.
(33)Wang, J.; Yao, H.-B.; He, D.; Zhang, C.-L.; Yu, S.-H. Facile Fabrication of Gold Nanoparticles-Poly(vinyl alcohol) Electrospun Water-Stable Nanofibrous Mats: Efficient Substrate Materials for Biosensors. ACS Appl. Mater. Interfaces 2012, 4, 1963-71.
(34)Praptowidodo, V. S. Influence of Swelling on Water Transport Through PVA-Based Membrane. J. Mol. Struct. 2005, 739, 207-12.
(35)Schmedlen, R. H.; Masters, K. S.; West, J. L. Photocrosslinkable Polyvinyl Alcohol Hydrogels That Can Be Modified with Cell Adhesion Peptides for Use in Tissue Engineering. Biomaterials 2002, 23, 4325-32.
(36)Gohil, J. M.; Bhattacharya, A.; Ray, P. Studies on The Crosslinking of Poly (Vinyl Alcohol). J. Polym. Res. 2005, 13, 161-69.
(37)Zhang, L.; Yu, P.; Luo, Y. Separation of Caprolactam–Water System by Pervaporation Through Crosslinked PVA Membranes. Sep. Purif. Technol. 2006, 52, 77-83.
(38)Yeom, C.-K.; Lee, K.-H. Pervaporation Separation of Water-Acetic Acid Mixtures Through Poly(Vinyl Alcohol) Membranes Crosslinked with Glutaraldehyde. J. Membr. Sci. 1996, 109, 257-65.
(39)Tang, C.; Saquing, C. D.; Morton, S. W.; Glatz, B. N.; Kelly, R. M.; Khan, S. A. Cross-linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches to Improve Enzyme Performance. ACS Appl. Mater. Interfaces 2014, 6, 11899-06.
(40)Naebe, M.; Lin, T.; Staiger, M. P.; Dai, L.; Wang, X. Electrospun Single-Walled Carbon Nanotube/Polyvinyl Alcohol Composite Nanofibers: Structure-Property Relationships. Nanotechnology 2008, 19, 305702.
(41)Tang, C.; Saquing, C. D.; Harding, J. R.; Khan, S. A. In Situ Cross-Linking of Electrospun Poly(Vinyl Alcohol) Nanofibers. Macromolecules 2010, 43, 630-37.
(42)Shalumon, K. T.; Binulal, N. S.; Selvamurugan, N.; Nair, S. V.; Menon, D.; Furuike, T.; Tamura, H.; Jayakumar, R. Electrospinning of Carboxymethyl Chitin/Poly(Vinyl Alcohol) Nanofibrous Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2009, 77, 863-69.
(43)Shaikh, R. P.; Kumar, P.; Choonara, Y. E.; du Toit, L. C.; Pillay, V. Crosslinked Electrospun PVA Nanofibrous Membranes: Elucidation of Their Physicochemical, Physicomechanical and Molecular Disposition. Biofabrication 2012, 4, 025002.
(44)Ramires, P. A.; Milella, E. Biocompatibility of Poly(Vinyl Alcohol)-Hyaluronic Acid and Poly(Vinyl Alcohol)-Gellan Membranes Crosslinked by Glutaraldehyde Vapors. J. Mater. Sci.: Mater. Med. 2002, 13, 119-23.
(45)Zhang, L.; Yu, P.; Luo, Y. Dehydration of Caprolactam–Water Mixtures Through Cross-Linked PVA Composite Pervaporation Membranes. J. Membr. Sci. 2007, 306, 93-02.
(46)Yang, J. M.; Wang, H. Z.; Yang, C. C. Modification and Characterization of Semi-Crystalline Poly(Vinyl Alcohol) with Interpenetrating Poly(Acrylic Acid) by UV Radiation Method for Alkaline Solid Polymer Electrolytes Membrane. J. Membr. Sci. 2008, 322, 74-80.
(47)Tang, Z.; Wei, J.; Yung, L.; Ji, B.; Ma, H.; Qiu, C.; Yoon, K.; Wan, F.; Fang, D.; Hsiao, B. S.; Chu, B. UV-Cured Poly(Vinyl Alcohol) Ultrafiltration Nanofibrous Membrane Based on Electrospun Nanofiber Scaffolds. J. Membr. Sci. 2009, 328, 1-5.
(48)Jha, S. K.; D'Souza, S. F. Preparation of Polyvinyl Alcohol-Polyacrylamide Composite Polymer Membrane by Gamma-Irradiation for Entrapment Of Urease. J. Biochem. Biophys. Methods 2005, 62, 215-8.
(49)Nho, Y.-C.; Lim, Y.-M.; Gwon, H.-J.; Choi, E.-K. Preparation and Characterization of PVA/PVP/Glycerin/Antibacterial Agent Hydrogels Using γ-Irradiation Followed by Freeze-Thawing. Korean J. Chem. Eng. 2010, 26, 1675-78.
(50)Miranda, T. M. R.; Goncalves, A. R.; Amorim, M. T. P. Ultraviolet-Induced Crosslinking of Poly(Vinyl Alcohol) Evaluated by Principal Component Analysis of FTIR Spectra. Polym. Int. 2001, 50, 1068-72.
(51)Kang, Y. O.; Yoon, I.-S.; Lee, S. Y.; Kim, D.-D.; Lee, S. J.; Park, W. H.; Hudson, S. M. Chitosan-Coated Poly(Vinyl Alcohol) Nanofibers for Wound Dressings. J. Biomed. Mater. Res., Part B 2010, 92B, 568-76.
(52)Bolto, B.; Tran, T.; Hoang, M.; Xie, Z. Crosslinked Poly(Vinyl Alcohol) Membranes. Prog. Polym. Sci. 2009, 34, 969-81.
(53)Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; Kim, Y.-K.; Lee, Y.-S.; Jeong, D. H.; Cho, M.-H. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2007, 3, 95-01.
(54)Seil, J. T.; Webster, T. J. Antimicrobial Applications of Nanotechnology: Methods and Literature. Int. J. Nanomed. 2012, 7, 2767-81.
(55)Russell, A. D.; Hugo, W. B., Antimicrobial Activity and Action of Silver. In Prog. Med. Chem., Ellis, G. P.; Luscombe, D. K., Eds. Elsevier: 1994; Chapter 7, pp 351-70.
(56)Jung, W. K.; Koo, H. C.; Kim, K. W.; Shin, S.; Kim, S. H.; Park, Y. H. Antibacterial Activity and Mechanism of Action of The Silver Ion in Staphylococcus Aureus and Escherichia Coli. Appl. Environ. Microbiol. 2008, 74, 2171-8.
(57)Sun, X.; Cao, Z.; Porteous, N.; Sun, Y. Amine, Melamine, and Amide N-Halamines as Antimicrobial Additives for Polymers. Ind. Eng. Chem. Res. 2010, 49, 11206-13.
(58)Sun, X.; Cao, Z.; Porteous, N.; Sun, Y. An N-Halamine-Based Rechargeable Antimicrobial and Biofilm Controlling Polyurethane. Acta Biomater. 2012, 8, 1498-06.
(59)Ren, X.; Kou, L.; Kocer, H. B.; Zhu, C.; Worley, S. D.; Broughton, R. M.; Huang, T. S. Antimicrobial Coating of An N-Halamine Biocidal Monomer on Cotton Fibers via Admicellar Polymerization. Colloids Surf., A 2008, 317, 711-16.
(60)Fuglsang, C. C.; Johansen, C.; Christgau, S.; Adler-Nissen, J. Antimicrobial Enzymes: Applications and Future Potential in the Food Industry. Trends Food Sci. Technol. 1995, 6, 390-96.
(61)Thallinger, B.; Prasetyo, E. N.; Nyanhongo, G. S.; Guebitz, G. M. Antimicrobial Enzymes: An Emerging Strategy to Fight Microbes and Microbial Biofilms. Biotechnol. J. 2013, 8, 97-09.
(62)Ramer, G.; Lendl, B., Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. In Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd: 2006.
(63)Gaffney, J. S.; Marley, N. A.; Jones, D. E., Fourier Transform Infrared (FTIR) Spectroscopy. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
(64)Noguez, C. Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment. J. Phys. Chem. C 2007, 111, 3806-19.
(65)Saion, E.; Gharibshahi, E.; Naghavi, K. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method. Int. J. Mol. Sci. 2013, 14, 7880-96.
(66)Tissue, B. M., Ultraviolet and Visible Absorption Spectroscopy. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
(67)Leonard, D. N.; Chandler, G. W.; Seraphin, S., Scanning Electron Microscopy. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
(68)Newbury, D. E., Energy Dispersive Spectrometry. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
(69)Antolovich, S. D., Tension Testing. In Characterization of Materials, John Wiley & Sons, Inc.: 2002.
(70)Zhang, L.; Gong, X.; Bao, Y.; Zhao, Y.; Xi, M.; Jiang, C.; Fong, H. Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 14433-40.
(71)Ghasemi, M.; Minier, M.; Tatoulian, M.; Arefi-Khonsari, F. Determination of Amine and Aldehyde Surface Densities:  Application to the Study of Aged Plasma Treated Polyethylene Films. Langmuir 2007, 23, 11554-61.
(72)Dickerson, M. B.; Lyon, W. J.; Gruner, W. E.; Mirau, P. A.; Jespersen, M. L.; Fang, Y.; Sandhage, K. H.; Naik, R. R. Unlocking the Latent Antimicrobial Potential of Biomimetically Synthesized Inorganic Materials. Adv. Funct. Mater. 2013, 23, 4236-45.
(73)Luo, J.; Sun, Y. Acyclicn-Halamine-Based Fibrous Materials: Preparation, Characterization, and Biocidal Functions. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3588-00.
(74)Xu, M.; Bunes, B. R.; Zang, L. Paper-Based Vapor Detection of Hydrogen Peroxide: Colorimetric Sensing with Tunable Interface. ACS Appl. Mater. Interfaces 2011, 3, 642-47.
(75)Mueller, U.; Sauer, T.; Weigel, I.; Pichner, R.; Pischetsrieder, M. Identification of H2O2 as a Major Antimicrobial Component in Coffee. Food Funct. 2011, 2, 265-72.
(76)Wong, K. K. H.; Hutter, J. L.; Zinke-Allmang, M.; Wan, W. Physical Properties of Ion Beam Treated Electrospun Poly(Vinyl Alcohol) Nanofibers. Eur. Polym. J. 2009, 45, 1349-58.
(77)Han, D.; Filocamo, S.; Kirby, R.; Steckl, A. J. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning. ACS Appl. Mater. Interfaces 2011, 3, 4633-39.
(78)Miao, Y.-E.; Wang, R.; Chen, D.; Liu, Z.; Liu, T. Electrospun Self-Standing Membrane of Hierarchical SiO2@γ-AlOOH (Boehmite) Core/Sheath Fibers for Water Remediation. ACS Appl. Mater. Interfaces 2012, 4, 5353-59.
(79)Hang, A. T.; Tae, B.; Park, J. S. Non-Woven Mats of Poly(Vinyl Alcohol)/Chitosan Blends Containing Silver Nanoparticles: Fabrication and Characterization. Carbohydr. Polym. 2010, 82, 472-79.
(80)Wang, X.; Chen, X.; Yoon, K.; Fang, D.; Hsiao, B. S.; Chu, B. High Flux Filtration Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite Coating. Environ. Sci. Technol. 2005, 39, 7684-91.
(81)Hong, K. H. Preparation and Properties of Electrospun Poly(Vinyl Alcohol)/Silver Fiber Web as Wound Dressings. Polym. Eng. Sci. 2007, 47, 43-49.
(82)Taepaiboon, P.; Rungsardthong, U.; Supaphol, P. Effect of Cross-linking on Properties and Release Characteristics of Sodium Salicylate-Loaded Electrospun Poly(Vinyl Alcohol) Fibre Mats. Nanotechnology 2007, 18, 175102.
(83)Reneker, D. H.; Chun, I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216.
(84)Zeng, J.; Xu, X.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Jing, X. Biodegradable Electrospun Fibers for Drug Delivery. J. Controlled Release 2003, 92, 227-31.
(85)Yao, L.; Haas, T. W.; Guiseppi-Elie, A.; Bowlin, G. L.; Simpson, D. G.; Wnek, G. E. Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers. Chem. Mater. 2003, 15, 1860-64.
(86)Kumar, J.; D'Souza, S. F. Preparation of PVA Membrane forIimmobilization of GOD for Glucose Biosensor. Talanta 2008, 75, 183-8.
(87)Wang, Y.; Hsieh, Y.-L. Crosslinking of Polyvinyl Alcohol (PVA) Fibrous Membranes with Glutaraldehyde and PEG Diacylchloride. J. Appl. Polym. Sci. 2010, 116, 3249-55.
(88)Wu, L.; Yuan, X.; Sheng, J. Immobilization of Cellulasein Nanofibrous PVA Membranes by Electrospinning. J. Membr. Sci. 2005, 250, 167-73.
(89)Yang, D.-J.; Kamienchick, I.; Youn, D. Y.; Rothschild, A.; Kim, I.-D. Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading. Adv. Funct. Mater. 2010, 20, 4258-64.
(90)Signori, A. M.; Santos, K. D. O.; Eising, R.; Albuquerque, B. L.; Giacomelli, F. C.; Domingos, J. B. Formation of Catalytic Silver Nanoparticles Supported on Branched Polyethyleneimine Derivatives. Langmuir 2010, 26, 17772-79.
(91)He, D.; Hu, B.; Yao, Q.-F.; Wang, K.; Yu, S.-H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano 2009, 3, 3993-02.
(92)Rujitanaroj, P.-O.; Pimpha, N.; Supaphol, P. Wound-Dressing Materials with Antibacterial Activity from Electrospun Gelatin Fiber Mats Containing Silver Nanoparticles. Polymer 2008, 49, 4723-32.
(93)Xiao, S.; Shen, M.; Guo, R.; Wang, S.; Shi, X. Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: Synthesis, Characterization, and Potential Environmental Applications. J. Phys. Chem. C 2009, 113, 18062-68.
(94)Bagihalli, G. B.; Avaji, P. G.; Patil, S. A.; Badami, P. S. Synthesis, Spectral Characterization, In Vitro Antibacterial, Antifungal and Cytotoxic Activities of Co(II), Ni(II) and Cu(II) Complexes with 1,2,4-Triazole Schiff Bases. Eur. J. Med. Chem. 2008, 43, 2639-49.
(95)Zhang, Y.; Peng, H.; Huang, W.; Zhou, Y.; Yan, D. Facile Preparation and Characterization of Highly Antimicrobial Colloid Ag or Au Nanoparticles. J. Colloid Interface Sci. 2008, 325, 371-76.
(96)Ghule, K.; Ghule, A. V.; Chen, B.-J.; Ling, Y.-C. Preparation and Characterization of ZnO Nanoparticles Coated Paper and Its Antibacterial Activity Study. Green Chem. 2006, 8, 1034-41.
(97)Heinlaan, M.; Ivask, A.; Blinova, I.; Dubourguier, H.-C.; Kahru, A. Toxicity of Nanosized and Bulk ZnO, CuO and TiO2 to Bacteria Vibrio Fischeri and Crustaceans Daphnia Magna and Thamnocephalus Platyurus. Chemosphere 2008, 71, 1308-16.
(98)Liao, Y.; Wang, Y.; Feng, X.; Wang, W.; Xu, F.; Zhang, L. Antibacterial Surfaces Through Dopamine Functionalization and Silver Nanoparticle Immobilization. Mater. Chem. Phys. 2010, 121, 534-40.
(99)Sureshkumar, M.; Siswanto, D. Y.; Lee, C.-K. Magnetic Antimicrobial Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles. J. Mater. Chem. 2010, 20, 6948-55.
(100)Deng, Z.; Zhu, H.; Peng, B.; Chen, H.; Sun, Y.; Gang, X.; Jin, P.; Wang, J. Synthesis of PS/Ag Nanocomposite Spheres with Catalytic and Antibacterial Activities. ACS Appl. Mater. Interfaces 2012, 4, 5625-32.
(101)Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. Silver-Nanoparticle-Embedded Antimicrobial Paints Based on Vegetable Oil. Nat. Mater. 2008, 7, 236-41.
(102)Dallas, P.; Tucek, J.; Jancik, D.; Kolar, M.; Panacek, A.; Zboril, R. Magnetically Controllable Silver Nanocomposite with Multifunctional Phosphotriazine Matrix and High Antimicrobial Activity. Adv. Funct. Mater. 2010, 20, 2347-54.
(103)Mansur, H. S.; Sadahira, C. M.; Souza, A. N.; Mansur, A. A. P. FTIR Spectroscopy Characterization of Poly (Vinyl Alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde. Mater. Sci. Eng.,C 2008, 28, 539-48.
(104)Hong, K. H.; Park, J. L.; Sul, I. H.; Youk, J. H.; Kang, T. J. Preparation of Antimicrobial Poly(Vinyl Alcohol) Nanofibers Containing Silver Nanoparticles. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2468-74.
(105)Fang, X.; Ma, H.; Xiao, S.; Shen, M.; Guo, R.; Cao, X.; Shi, X. Facile Immobilization of Gold Nanoparticles into Electrospun Polyethyleneimine/Polyvinyl Alcohol Nanofibers for Catalytic Applications. J. Mater. Chem. 2011, 21, 4493-01.
(106)Choi, S. S.; Lee, S. G.; Joo, C. W.; Im, S. S.; Kim, S. H. Formation of Interfiber Bonding in Electrospun Poly(Etherimide) Nanofiber Web. J. Mater. Sci. 2004, 39, 1511-13.
(107)Lu, G.; Wu, D.; Fu, R. Studies on the Synthesis and Antibacterial Activities of Polymeric Quaternary Ammonium Salts from Dimethylaminoethyl Methacrylate. React. Funct. Polym. 2007, 67, 355-66.
(108)Marini, M.; Bondi, M.; Iseppi, R.; Toselli, M.; Pilati, F. Preparation and Antibacterial Activity of Hybrid Materials Containing Quaternary Ammonium Salts via Sol–Gel Process. Eur. Polym. J. 2007, 43, 3621-28.
(109)Jia, Z.; shen, D.; Xu, W. Synthesis and Antibacterial Activities of Quaternary Ammonium Salt of Chitosan. Carbohydr. Res. 2001, 333, 1-6.
(110)Fulmer, P. A.; Wynne, J. H. Development of Broad-Spectrum Antimicrobial Latex Paint Surfaces Employing Active Amphiphilic Compounds. ACS Appl. Mater. Interfaces 2011, 3, 2878-84.
(111)Song, J.; Kim, H.; Jang, Y.; Jang, J. Enhanced Antibacterial Activity of Silver/Polyrhodanine-Composite-Decorated Silica Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 11563-68.
(112)Song, J.; Kang, H.; Lee, C.; Hwang, S. H.; Jang, J. Aqueous Synthesis of Silver Nanoparticle Embedded Cationic Polymer Nanofibers and Their Antibacterial Activity. ACS Appl. Mater. Interfaces 2012, 4, 460-65.
(113)Zhengbing, C.; Xinbo, S.; Yuyu, S.; Hao, F. Rechargeable Antibacterial and Antifungal Polymeric Silver Sulfadiazines. J. Bioact. Compat. Polym 2009, 24, 350-67.
(114)Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res. 2000, 52, 662-68.
(115)No, H. K.; Young Park, N.; Ho Lee, S.; Meyers, S. P. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65-72.
(116)Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial Activity, Interactions with Food Components and Applicability as a Coating on Fruit and Vegetables. Food Microbiology 2004, 21, 703-14.
(117)Zheng, L.-Y.; Zhu, J.-F. Study on Antimicrobial Activity of Chitosan with Different Molecular Weights. Carbohydr. Polym. 2003, 54, 527-30.
(118)Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-Solubility of Chitosan and Its Antimicrobial Activity. Carbohydr. Polym. 2006, 63, 367-74.
(119)Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent:  Applications and Mode of Action. Biomacromolecules 2003, 4, 1457-65.
(120)Chen, Z.; Sun, Y. Antimicrobial Polymers Containing Melamine Derivatives. II. Biocidal Polymers Derived from 2-Vinyl-4,6-Diamino-1,3,5-Triazine. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 4089-98.
(121)Braun, M.; Sun, Y. Antimicrobial Polymers Containing Melamine Derivatives. I. Preparation And Characterization of Chloromelamine-Based Cellulose. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3818-27.
(122)Dong, A.; Huang, Z.; Lan, S.; Wang, Q.; Bao, S.; Siriguleng; Zhang, Y.; Gao, G.; Liu, F.; Harnoode, C. N-Halamine-Decorated Polystyrene Nanoparticles based on 5-Allylbarbituric Acid: from Controllable Fabrication to Bactericidal Evaluation. J. Colloid Interface Sci. 2014, 413, 92-99.
(123)Luo, J.; Sun, Y. Acyclicn-Halamine-Based Biocidal Tubing: Preparation, Characterization, and Rechargeable Biofilm-Controlling Functions. J. Biomed. Mater. Res., Part A 2008, 84A, 631-42.
(124)Liang, J.; Owens, J. R.; Huang, T. S.; Worley, S. D. Biocidal Hydantoinylsiloxane Polymers. IV.N-Halamine Siloxane-Functionalized Silica Gel. J. Appl. Polym. Sci. 2006, 101, 3448-54.
(125)Xuehong, R.; Changyun, Z.; Lei, K.; Worley, S. D.; Kocer, H. B.; Broughton, R. M.; Huang, T. S. Acyclic N-Halamine Polymeric Biocidal Films. J. Bioact. Compat. Polym 2010, 25, 392-05.
(126)Cerkez, I.; Worley, S. D.; Broughton, R. M.; Huang, T. S. Antimicrobial Surface Coatings for Polypropylene Nonwoven Fabrics. React. Funct. Polym. 2013, 73, 1412-19.
(127)Wong, S. Y.; Li, Q.; Veselinovic, J.; Kim, B. S.; Klibanov, A. M.; Hammond, P. T. Bactericidal and Virucidal Ultrathin Films Assembled Layer By Layer from Polycationic N-Alkylated Polyethylenimines and Polyanions. Biomaterials 2010, 31, 4079-87.
(128)Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. A Novel N-Halamine Acrylamide Monomer and Its Copolymers for Antimicrobial Coatings. React. Funct. Polym. 2011, 71, 561-68.
(129)Sun, G.; Wheatley, W. B.; Worley, S. D. A New Cyclic N-Halamine Biocidal Polymer. Ind. Eng. Chem. Res. 1994, 33, 168-70.
(130)Ren, X.; Akdag, A.; Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. N-Halamine-Coated Cotton for Antimicrobial and Detoxification Applications. Carbohydr. Polym. 2009, 78, 220-26.
(131)Hui, F.; Debiemme-Chouvy, C. Antimicrobial N-Halamine Polymers and Coatings: A Review of Their Synthesis, Characterization, and Applications. Biomacromolecules 2013, 14, 585-01.
(132)Ren, X.; Kocer, H. B.; Kou, L.; Worley, S. D.; Broughton, R. M.; Tzou, Y. M.; Huang, T. S. Antimicrobial Polyester. J. Appl. Polym. Sci. 2008, 109, 2756-61.
(133)Cerkez, I.; Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. Multifunctional Cotton Fabric: Antimicrobial and Durable Press. J. Appl. Polym. Sci. 2012, 124, 4230-38.
(134)Luo, J.; Porteous, N.; Sun, Y. Rechargeable Biofilm-Controlling Tubing Materials for Use in Dental Unit Water Lines. ACS Appl. Mater. Interfaces 2011, 3, 2895-03.
(135)Sun, Y.; Sun, G. Novel Refreshable N-Halamine Polymeric Biocides: Grafting Hydantoin-Containing Monomers onto High Performance Fibers by a Continuous Process. J. Appl. Polym. Sci. 2003, 88, 1032-39.
(136)Yao, J.; Sun, Y. Preparation and Characterization of Polymerizable Hindered Amine-Based Antimicrobial Fibrous Materials. Ind. Eng. Chem. Res. 2008, 47, 5819-24.
(137)Kou, L.; Liang, J.; Ren, X.; Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. Novel N-Halamine Silanes. Colloids Surf., A 2009, 345, 88-94.
(138)Sun, Y.; Sun, G. Durable and Refreshable Polymeric N-Halamine Biocides Containing 3-(4′-Vinylbenzyl)-5,5-Dimethylhydantoin. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3348-55.
(139)Sun, Y.; Sun, G. Durable and Regenerable Antimicrobial Textile Materials Prepared by a Continuous Grafting Process. J. Appl. Polym. Sci. 2002, 84, 1592-99.
(140)Qian, L.; Sun, G. Durable and Regenerable Antimicrobial Textiles: Improving Efficacy and Durability of Biocidal Functions. J. Appl. Polym. Sci. 2004, 91, 2588-93.
(141)Qian, L.; Sun, G. Durable and Regenerable Antimicrobial Textiles: Synthesis and Applications of 3-Methylol-2,2,5,5-Tetramethyl-Imidazolidin-4-One (MTMIO). J. Appl. Polym. Sci. 2003, 89, 2418-25.
(142)Luo, J.; Chen, Z.; Sun, Y. Controlling biofilm formation with an N-halamine-based polymeric additive. J Biomed Mater Res A 2006, 77, 823-31.
(143)Padmanabhuni, R. V.; Luo, J.; Cao, Z.; Sun, Y. Preparation and Characterization of N-Halamine-based Antimicrobial Fillers. Ind. Eng. Chem. Res. 2012, 51, 5148-56.
(144)Chen, Z.; Sun, Y. N-Halamine-Based Antimicrobial Additives for Polymers: Preparation, Characterization and Antimicrobial Activity. Ind. Eng. Chem. Res. 2006, 45, 2634-40.
(145)Sun, Y.; Sun, G. Novel Refreshable N-Halamine Polymeric Biocides:  N-Chlorination of Aromatic Polyamides. Ind. Eng. Chem. Res. 2004, 43, 5015-20.
(146)Cerkez, I.; Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. N-Halamine Copolymers for Biocidal Coatings. React. Funct. Polym. 2012, 72, 673-79.
(147)Chen, Y.; Han, Q. Designing N-Halamine Based Antibacterial Surface on Polymers: Fabrication, Characterization, and Biocidal Functions. Appl. Surf. Sci. 2011, 257, 6034-39.
(148)Cerkez, I.; Kocer, H. B.; Worley, S. D.; Broughton, R. M.; Huang, T. S. N-Halamine Biocidal Coatings via A Layer-By-Layer Assembly Technique. Langmuir 2011, 27, 4091-97.
(149)Cerkez, I.; Worley, S. D.; Broughton, R. M.; Huang, T. S. Rechargeable Antimicrobial Coatings for Poly(Lactic Acid) Nonwoven Fabrics. Polymer 2013, 54, 536-41.
(150)Dong, A.; Zhang, Q.; Wang, T.; Wang, W.; Liu, F.; Gao, G. Immobilization of Cyclic N-Halamine on Polystyrene-Functionalized Silica Nanoparticles: Synthesis, Characterization, and Biocidal Activity. J. Phys. Chem. C 2010, 114, 17298-03.
(151)Dong, A.; Xue, M.; Lan, S.; Wang, Q.; Zhao, Y.; Wang, Y.; Zhang, Y.; Gao, G.; Liu, F.; Harnoode, C. Bactericidal Evaluation of N-Halamine-Functionalized Silica Nanoparticles Based on Barbituric Acid. Colloids Surf., B 2014, 113, 450-57.
(152)Dong, A.; Sun, Y.; Lan, S.; Wang, Q.; Cai, Q.; Qi, X.; Zhang, Y.; Gao, G.; Liu, F.; Harnoode, C. Barbituric Acid-Based Magnetic N-Halamine Nanoparticles as Recyclable Antibacterial Agents. ACS Appl. Mater. Interfaces 2013, 5, 8125-33.
(153)Dong, A.; Lan, S.; Huang, J.; Wang, T.; Zhao, T.; Xiao, L.; Wang, W.; Zheng, X.; Liu, F.; Gao, G.; Chen, Y. Modifying Fe3O4-Functionalized Nanoparticles with N-Halamine and Their Magnetic/Antibacterial Properties. ACS Appl. Mater. Interfaces 2011, 3, 4228-35.
(154)Dong, A.; Lan, S.; Huang, J.; Wang, T.; Zhao, T.; Wang, W.; Xiao, L.; Zheng, X.; Liu, F.; Gao, G.; Chen, Y. Preparation of Magnetically Separable N-Halamine Nanocomposites for the Improved Antibacterial Application. J. Colloid Interface Sci. 2011, 364, 333-40.
(155)Chen, Z.; Luo, J.; Sun, Y. Biocidal Efficacy, Biofilm-Controlling Function, and Controlled Release Effect of Chloromelamine-Based Bioresponsive Fibrous Materials. Biomaterials 2007, 28, 1597-09.
(156)Destaye, A. G.; Lin, C. K.; Lee, C. K. Glutaraldehyde Vapor Cross-linked Nanofibrous PVA Mat with in Situ Formed Silver Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 4745-52.
(157)Geornaras, I.; Yoon, Y.; Belk, K. E.; Smith, G. C.; Sofos, J. N. Antimicrobial Activity of Epsilon-Polylysine Against Escherichia Coli O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes in Various Food Extracts. J. Food Sci. 2007, 72, M330-4.
(158)Li, L.; Xie, J.; Yu, S.; Su, Z.; Liu, S.; Liu, F.; Xie, C.; Zhang, B.; Zhang, C. N-Terminal PEGylated Cellulase: a High Stability Enzyme in 1-butyl-3-Methylimidazolium Chloride. Green Chem. 2013, 15, 1624.
(159)Hanušova, K.; Vapenka, L.; Dobiaš, J.; Miškova, L. Development of Antimicrobial Packaging Materials with Immobilized Glucose Oxidase and Lysozyme. Cent. Eur. J. Chem. 2013, 11, 1066-78.
(160)Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose Oxidase: An Overview. Biotechnol. Adv. 2009, 27, 489-01.
(161)Vartiainen, J.; Ratto, M.; Paulussen, S. Antimicrobial Activity of Glucose Oxidase-Immobilized Plasma-Activated Polypropylene Films. Packag. Technol. Sci. 2005, 18, 243-51.
(162)Tiina, M.; Sandholm, M. Antibacterial Effect of the Glucose Oxidase-Glucose System on Food-Poisoning Organisms. Int. J. Food Microbiol. 1989, 8, 165-74.
(163)McDonnell, G.; Russell, A. D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147-79.
(164)Sleigh, J. W.; Linter, S. P. Hazards of Hydrogen Peroxide. BMJ 1985, 291, 1706-06.
(165)Doretti, L.; Ferrara, D.; Gattolin, P.; Lora, S. Amperometric Biosensor with Physically Immobilized Glucose Oxidase on a PVA Cryogel Membrane. Talanta 1997, 44, 859-66.
(166)Wang, L.; Gao, X.; Jin, L.; Wu, Q.; Chen, Z.; Lin, X. Amperometric Glucose Biosensor Based on Silver Nanowires and Glucose Oxidase. Sens. Actuators B 2013, 176, 9-14.
(167)Ren, G.; Xu, X.; Liu, Q.; Cheng, J.; Yuan, X.; Wu, L.; Wan, Y. Electrospun Poly(Vinyl Alcohol)/Glucose Oxidase Biocomposite Membranes for Biosensor Applications. React. Funct. Polym. 2006, 66, 1559-64.
(168)Zhang, J.; Wang, C.; Chen, S.; Yuan, D.; Zhong, X. Amperometric Glucose Biosensor Based on Glucose Oxidase-Lectin Biospecific Interaction. Enzyme Microb. Technol. 2013, 52, 134-40.
(169)Huang, S.; Ding, Y.; Liu, Y.; Su, L.; Filosa, R.; Lei, Y. Glucose Biosensor Using Glucose Oxidase and Electrospun Mn2O3-Ag Nanofibers. Electroanalysis 2011, 23, 1912-20.
(170)Park, B. W.; Zheng, R.; Ko, K. A.; Cameron, B. D.; Yoon, D. Y.; Kim, D. S. A Novel Glucose Biosensor Using Bi-Enzyme Incorporated with Peptide Nanotubes. Biosens. Bioelectron. 2012, 38, 295-01.
(171)Su, X.; Ren, J.; Meng, X.; Ren, X.; Tang, F. A Novel Platform for Enhanced Biosensing Based on the Synergy Effects of Electrospun Polymer Nanofibers and Graphene Oxides. Analyst 2013, 138, 1459-66.
(172)Doretti, L.; Ferrara, D.; Gattolin, P.; Lora, S.; Schiavon, F.; Veronese, F. M. PEG-Modified Glucose Oxidase Immobilized on a PVA Cryogel Membrane for Amperometric Biosensor Applications. Talanta 1998, 45, 891-98.
(173)Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K. Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview. J. Mol. Catal. B: Enzym. 2009, 56, 189-95.
(174)Ge, L.; Zhao, Y.-S.; Mo, T.; Li, J.-R.; Li, P. Immobilization of Glucose Oxidase in Electrospun Nanofibrous Membranes for Food Preservation. Food Control 2012, 26, 188-93.
(175)Zeng, J.; Aigner, A.; Czubayko, F.; Kissel, T.; Wendorff, J. H.; Greiner, A. Poly(Vinyl Alcohol) Nanofibers by Electrospinning as a Protein Delivery System and the Retardation of Enzyme Release by Additional Polymer Coatings. Biomacromolecules 2005, 6, 1484-88.
(176)Godjevargova, T.; Konsulov, V.; Dimov, A.; Vasileva, N. Behavior of Glucose Oxidase Immobilized on Ultrafiltration Membranes Obtained by Copolymerizing Acrylonitrile and N-Vinylimidazol. J. Membr. Sci. 2000, 172, 279-85.
(177)Krajewska, B. Application of Chitin- and Chitosan-Based Materials for Enzyme Immobilizations: A Review. Enzyme Microb. Technol. 2004, 35, 126-39.
(178)Lad, U.; Kale, G. M.; Bryaskova, R. Glucose Oxidase Encapsulated Polyvinyl Alcohol-Silica Hybrid Films for an Electrochemical Glucose Sensing Electrode. Anal. Chem. 2013, 85, 6349-55.
(179)Kozhukharova, A.; Kirova, N.; Popova, Y.; Batsalova, K.; Kunchev, K. Properties of Glucose Oxidase Immobilized In Gel of Polyvinyl Alcohol. Biotechnol. Bioeng. 1988, 32, 245-48.
(180)Liu, J.; Niu, J.; Yin, L.; Jiang, F. In Situ Encapsulation of Laccase in Nanofibers by Electrospinning for Development of Enzyme Biosensors for Chlorophenol Monitoring. Analyst 2011, 136, 4802-08.
(181)Wong, F.-L.; Abdul-Aziz, A. Comparative Study of Poly(Vinyl Alcohol)-Based Support Materials for the Immobilization of Glucose Oxidase. J. Chem. Technol. Biotechnol. 2008, 83, 41-46.
(182)Wang, Y.; Hsieh, Y. L. Immobilization of Lipase Enzyme in Polyvinyl Alcohol (PVA) Nanofibrous Membranes. J. Membr. Sci. 2008, 309, 73-81.
(183)Duan, B.; Yuan, X.; Zhu, Y.; Zhang, Y.; Li, X.; Zhang, Y.; Yao, K. A Nanofibrous Composite Membrane of PLGA–Chitosan/PVA Prepared by Electrospinning. Eur. Polym. J. 2006, 42, 2013-22.
(184)Betancor, L.; Luckarift, H. R. Bioinspired Enzyme Encapsulation for Biocatalysis. Trends Biotechnol. 2008, 26, 566-72.
(185)Nicol, M. J.; Duke, F. R. Substrate Inhibition with Glucose Oxidase. J. Biol. Chem. 1966, 241, 4292-93.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔