跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白永勝
研究生(外文):Victor Purnomo
論文名稱:快速烘焙生物質以獲取有價值的生物製品
論文名稱(外文):Fast Torrefaction of Biomass to Obtain Valuable Bioproducts
指導教授:羅芬臺何郡軒
指導教授(外文):Fen-Tair LuoJinn-Hsuan Ho
口試委員:羅芬臺何郡軒
口試委員(外文):Fen-Tair LuoJinn-Hsuan Ho
口試日期:2015-06-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:107
中文關鍵詞:烘焙生物製品生物質前處理生物碳
外文關鍵詞:torrefactionorganic compoundbiomasspretreatmentbiocoal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
A study of fast torrefaction and its development to obtain valuable bio-products has been carried out in this work. Torrefaction is a mild pyrolysis of biomass performed at 200-320°C under atmospheric pressure in the absence of oxygen. By using liquid as heat transfer agent in torrefaction, the process can be significantly faster than that of conventional torrefaction to obtain biocoal with same quality. Fast torrefaction in this work was initially done at 300°C for 10 minutes using binary acetate salts in stainless steel crucible. Biomass studied in this work were leucaena, bamboo and PKS. The biocoal, condensable volatile organic compounds (VOCs) and released gases obtained from fast torrefaction were collected and analyzed. In order to obtain more bioproducts with higher boiling point such as hydroxyacetone and furfural, fast torrefaction was done under vacuum system with pressure of 1 mmHg. The VOCs obtained under the vacuum system were collected and analyzed separately. From the study, it can be concluded that the overall products yield of torrefaction of leucaena as a reference was 90%, where the yield of biocoal, VOCs and gases were 54.47%, 29.29% and 5.90%, respectively. The loss of this process is biocoal black tar caught in the solidified salts. Doing more batches of reaction and heating tape usage around the crucible can help to optimize the yield of released gases and VOCs. Releasing vacuum pressure to the torrefaction system was done with expectation to gain more useful organic compounds with higher boiling point, such as hydroxyacetone and furfural in the VOCs; but the results were not as high as that done at atmospheric pressure. Moreover, the handling of vacuum pressure is not easy as it tends to cause salts explosion immediately. Future development is expected to fix this phenomenon. Some pre-treatment were conducted prior to the reaction of biomass in test tubes in order to get higher biocoal quality. From the study, some conclusion can be made. Recovery of organic compounds released into the salts during reaction of biomass can be done better with pre-treatment in dilute sulfuric acid (4.8%) for depolymerization at 230°C and with pre-treatment in concentrated acetic acid for fast torrefaction at 300°C. Pre-treatment in dilute phosphoric acid (6.5%) or dilute sulfuric acid (4.8%) can be done to get finer and more porous structure of biocoal after torrefaction. Torrefied PKS have better porosity than torrefied leucaena and torrefied bamboo. Pre-treatment of leucaena in dilute sulfuric acid gave larger average pore diameter. Pre-treatment in dilute phosphoric acid (6.5%) is recommended to increase the yield of biocoal.
Abstract
Acknowledgments
Table of Content
List of Figures
List of Tables

Chapter 1 Introduction
1.1 Background
1.2 Previous Studies
1.3 Problem Statement
1.4 Research Objectives
1.5 Outline

Chapter 2 Literature Study
2.1 Biomass
2.2 Biocoal
2.3 Torrefaction
2.4 Vacuum distillation
2.5 Pre-treatment of biomass

Chapter 3 Experimental Section
3.1 Experimental Procedure
3.2 Experimental Design
3.3 Analyses of Bio-products

Chapter 4 Results and Discussion
4.1 Fast torrefaction in stainless steel crucible
4.2 Fast torrefaction test tubes involving pre-treatment in various acids

Chapter 5 Conclusion

References
Appendixes
(1) Twidell, J.; Weir, T. Renewable Energy Resources, 2nd ed.; Taylor and Francis: Oxon, 1986; Vol. 2.
(2) Chen, W. H.; Kuo, P. C. Energy 2010, 35 (6), 2580.
(3) Wannapeera, J.; Worasuwannarak, N. J. Anal. Appl. Pyrolysis 2012, 96, 173.
(4) Nunes, L. J. R.; Matias, J. C. O.; Catalão, J. P. S. Renew. Sustain. Energy Rev. 2014, 40, 153.
(5) Wang, C.; Peng, J.; Li, H.; Bi, X. T.; Legros, R.; Lim, C. J.; Sokhansanj, S. Bioresour. Technol. 2013, 127, 318.
(6) Kim, Y. H.; Lee, S. M.; Lee, H. W.; Lee, J. W. Bioresour. Technol. 2012, 116, 120.
(7) Nantapipat, J.; Luengnaruemitchai, A.; Wongkasemjit, S. World Acad. Sci. Eng. Technol. 2013, 76 (4), 479.
(8) De Wild, P.; Reith, H.; Heeres, E. Biomass pyrolysis for chemicals, Utrecht University, 2011.
(9) Garcia-Perez, M. The Formation of Polyaromatic Hydrocarbons and Dioxins During Pyrolysis: A Review of the Literature with Descriptions of Biomass Composition, Fast Pyrolysis Technologies and Thermochemical Reactions, Washington State University, 2008.
(10) Meena Devi, V. N.; Ariharan, V. N.; Nagendra Prasad, P. Res. J. Pharm. Biol. Chem. Sci. 2013, 4 (1), 515.
(11) Montaño, C. M. D.; Pels, J. R.; Fryda, L. E. In 9th World Bamboo Congress; 2012; pp 10–15.
(12) Okoroigwe, E. C.; Li, Z.; Onyegegbu, S. O.; Christopher, M. In The Fourth International Renewable Energy Congress; 2012; pp 3–4.
(13) Ghauri, M.; Tahir, M.; Abbas, T. Int. J. Conf. Manag. Stat. Soc. Sci. 2012, 1 (I), 30.
(14) Sridhar, G. In 15th European Biomass Conference and Exhibition; Bangalore, India, 2007; pp 532–535.
(15) Basu, P. In Biomass Gasification and Pyrolysis; © 2010 Elsevier Inc., 2010; pp 65–96.
(16) Rautiainen, M. Torrefied and carbonized wood, fuel properties and turn of exothermic reaction, University of Helsinki, 2010.
(17) Tumuluru, J. S.; Boardman, R.; Wright, C. In AIChE Annual Meeting, Conference Proceedings; 2010; pp 1–18.
(18) Shu, F. H.; Cai, M. J.; Luo, F. T. (19) United States (12). US20130139431A1, 2013.
(19) Tumuluru, J. S.; Sokhansanj, S.; Wright, C. T.; Kremer, T. In Advanced Gas Chromatography--Progress in Agricultural, Biomedical and Industrial Applications; 2012; pp 211–234.
(20) Young, S. Distillation Principles and Processes; Macmillan and Co., Ltd.: London, 1922.
(21) Hague, R. A. The pre-treatment and pyrolysis of biomass for the production of liquids and speciality chemicals, Aston University, 1998.
(22) Dobele, G.; Dizhbite, T.; Rossinskaja, G.; Telysheva, G.; Meier, D.; Radtke, S.; Faix, O. J. Anal. Appl. Pyrolysis 2003, 68-69, 197.
(23) Hong, B.; Xue, G.; Weng, L.; Guo, X. BioResources 2012, 7 (4), 4902.
(24) Wang, L.; Luo, Z.; Xiu, S.; Shahbazi, a. Energy Sources, Part A Recover. Util. Environ. Eff. 2011, 33 (13), 1230.
(25) Bergman, P. C. a; Boersma, a R.; Zwart, R. W. R.; Kiel, J. H. a. Energy Res. Cent. Netherlands ECN ECNC05013 2005, No. July, 71.
(26) Nixon, W. C. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1971, 261 (837), 45.
(27) American Society for Testing and Materials. ASTM Int. 2011, 94 (Reapproved 2011), 1.
(28) Kasparbauer, R. D. The Effects of Biomass Pretreatments on the Products of Fast Pyrolysis, Iowa State University, 2009.
(29) Park, S. J.; Seo, M. K. In Interface Science and Technology; Elsevier: Amsterdam, 2011; Vol. 18, pp 59–145.
(30) De Jonge, H.; Mittelmeijer-Hazeleger, M. C. Environ. Sci. Technol. 1996, 30 (2), 408.
(31) Boundy, B.; Diegel, S. W.; Wright, L.; Davis, S. C. Biomass Energy Data Book, 4th ed.; U.S. Department of Energy: Oak Ridge, 2011.
(32) Nocquet, T.; Dupont, C.; Commandre, J. M.; Grateau, M.; Thiery, S.; Salvador, S. Energy 2014, 72, 180.
(33) Siskin, M.; Scouten, C. G. Energy & Fuels 1989, 3 (9), 427.
(34) Kosov, V. F.; Sinelshchikov, V. a; Sytchev, G. a; Zaichenko, V. M. In The Fourth International Conference on Bioenvironment, Biodiversity and Renewable Energies; 2013; pp 29–32.
(35) Jongerius, A. L. Catalytic Conversion of Lignin for the Production of Aromatics, Utrecht University, 2013.
(36) Bekmuradov, V.; Luk, G.; Luong, R. Am. J. Eng. Res. 2014, 03 (06), 177.
(37) Sluiter, A.; Hames, B.; Ruiz, R. O.; Scarlata, C.; Sluiter, J.; Templeton, D.; Energy, D. of. Determination of Ash in Biomass; 2004.
(38) Pattiya, A.; Chaow-u-thai, A.; Rittidech, S. Int. J. Green Energy 2013, 10 (5), 544.
(39) Bondesson, P. M. J. Enviromental Manag. 2008, 86 (June), 481.
(40) Yusufu M. I. African J. Pure Appl. Chem. 2012, 6 (9), 123.
(41) Meng, X.; Wells, T.; Sun, Q.; Huang, F.; Ragauskas, A. Green Chem. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top