跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 14:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:努妮雅
研究生(外文):Nia Nurfitria
論文名稱:以自組裝單分子層調控電極功函數:偶極距效應
論文名稱(外文):Work Function Modulation with Self-Assembled Monolayer (SAM): Effect of Dipole Moment
指導教授:陶雨台
指導教授(外文):Yu-Tai Tao
口試委員:陶雨台
口試委員(外文):Yu-Tai Tao
口試日期:2015-07-06
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:64
中文關鍵詞:功函數自組裝單分子極性
外文關鍵詞:Work functionSelf-assembled monolayerDipole moment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,一系列帶有極性取代基的芳香烴硫醇及磷酸化合物在金及氧化銦錫/鋁電極表面形成之自組裝單分子薄膜以藉此調控電極功函數。單分子薄膜之結構乃由橢圓儀、反射式紅外線光譜與水接觸角所鑑定。金和氧化銦錫/鋁表面的自組裝單分子薄膜之覆蓋率則使用循環伏安法與X射線光電子能譜測量。實驗結果顯示增加分子內的極性會造成表面分子傾斜偏離法線方向而讓覆蓋率下降。因此高極性之分子無法如預期提昇功函數,其原因亦是在於分子組裝於表面時,高極性官能基之偶極-偶極斥力迫使分子傾斜於表面而改變了偶極距方向。此外在本研究中以較小極性之前驅物形成自組裝薄膜後,進行原位表面氧化反應,以便形成高極性官能基之實驗並沒有成功。
A series of dipolar aromatic thiol and phosphonic acid compounds were used to form self-assembled monolayers on gold and ITO/Al surfaces in order to modulate their work function. Ellipsometry, reflection absorption infrared spectroscopy (RAIRS) and water contact angle were used to characterize the structure of the monolayers. Cyclic voltammetry and HRXPS were used to determine the surface coverage of the self-assembled monolayer molecules on the gold and ITO/Al surface. The results show that as the dipole moment increases in the molecule, the molecules tilt away from the surface normal and also the surface coverage decreases. This can be the reason that a strongly dipolar molecule does not necessarily generate work function change proportionally because of the dipole direction changes by molecular tilting caused by dipole-dipole repulsion between the strong polar groups in the monolayer assembly. It is also shown that in situ surface oxidation in this study did not successfully provide the strong dipolar group from its less polar precursor.
ABSTRACT iv
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLE xii
CHAPTER 1 INTRODUCTION 1
1.1. Research Background 1
1.2. Problem Statement 3
CHAPTER 2 LITERATURE STUDY 5
2.1. Organic Electronic Device: Organic Light Emitting Diode 5
2.2. Interface Engineering in Organic Light Emitting Diode (OLED) 8
2.3. Work Function Modulation with Self-Assembled Monolayer 9
2.4. Oxidation Reaction on Self-Asssembled Monolayer 12
2.5. Characterization of Self-Assembled Monolayer 13
2.5.1. Ellipsometry 13
2.5.2. Contact Angle Measurement 14
2.5.3. Reflection-Absorption Infrared Spectroscopy 15
2.5.4. Photoelectron Spectrometer (AC-2) 17
2.5.5. Cyclic Voltammetry (CV) 17
2.5.6. X-Ray Photoelectron Spectroscopy (XPS) 18
CHAPTER 3 EXPERIMENTAL SECTION 20
3.1. Chemical and Materials 20
3.2. Procedure 21
3.2.1. Preparation of Self-Assembled Monolayer on Gold 21
3.2.2. Preparation of Self-Assembled Monolayer on ITO/Al 21
3.2.3. Characterization of Self-Assembled Monolayer 22
3.2.4. Oxidation Reaction of Sulfide Group in Self-Assembled Monolayer 23
CHAPTER 4 RESULTS AND DISCUSSION 24
4.1. Characterization of Self-Assembled Monolayer 24
4.2. Effect of the Dipole Moment on the Gold and ITO/Al Work Function 33
4.3. Oxidation Reaction on the Self Assembled Monolayer 44
CHAPTER 5 CONCLUSION 49
REFERENCES 50
(1)Klauk, H. Organic electronics: materials, manufacturing, and applications; John Wiley & Sons, 2006.
(2)Sekine, C.; Tsubata, Y.; Yamada, T.; Kitano, M.; Doi, S. Science and Technology of Advanced Materials 2014, 15, 034203.
(3)Hatton, R. A.; Day, S. R.; Chesters, M. A.; Willis, M. R. Thin Solid Films 2001, 394, 291.
(4)Geffroy, B.; le Roy, P.; Prat, C. Polymer International 2006, 55, 572.
(5)Tao, Y.-T.; Wu, K.-Y.; Huang, K.-H.; Perng, T.-P. Organic Electronics 2011, 12, 602.
(6)Ma, H.; Yip, H.-L.; Huang, F.; Jen, A. K. Y. Advanced Functional Materials 2010, 20, 1371.
(7)Heimel, G.; Romaner, L.; Zojer, E.; Bredas, J.-L. Accounts of Chemical Research 2008, 41, 721.
(8)Koch, N. Chemphyschem 2007, 8, 1438.
(9)Pope, M.; Kallmann, H. P.; Magnante, P. The Journal of Chemical Physics 1963, 38, 2042.
(10)Dodabalapur, A. Solid State Communications 1997, 102, 259.
(11)Tang, C. W.; VanSlyke, S. A. Applied Physics Letters 1987, 51, 913.
(12)Choulis, S. A.; Choong, V. E.; Patwardhan, A.; Mathai, M. K.; So, F. Advanced Functional Materials 2006, 16, 1075.
(13)Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chemistry of Materials 2004, 16, 4413.
(14)Ponomarenko, S.; Kirchmeyer, S. Polymer Science Series C 2014, 56, 1.
(15)Yersin, H. In Transition Metal and Rare Earth Compounds; Springer Berlin Heidelberg: 2004; Vol. 241, p 1.
(16)Forrest, S. R. Nature 2004, 428, 911.
(17)Wu, K. Y.; Yu, S. Y.; Tao, Y. T. Langmuir 2009, 25, 6232.
(18)Lee, J.; Jung, B.-J.; Lee, J.-I.; Chu, H. Y.; Do, L.-M.; Shim, H.-K. Journal of Materials Chemistry 2002, 12, 3494.
(19)Ulman, A. In An Introduction to Ultrathin Organic Films; Ulman, A., Ed.; Academic Press: San Diego, 1991, p 237.
(20)Verwüster, E.; Hofmann, O. T.; Egger, D. A.; Zojer, E. The Journal of Physical Chemistry C 2015, 119, 7817.
(21)Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Applied Physics Letters 1997, 71, 3528.
(22)Osella, S.; Cornil, D.; Cornil, J. Phys Chem Chem Phys 2014, 16, 2866.
(23)Fenwick, O.; Van Dyck, C.; Murugavel, K.; Cornil, D.; Reinders, F.; Haar, S.; Mayor, M.; Cornil, J.; Samorì, P. J. Mater. Chem. C 2015, 3, 3007.
(24)Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Brédas, J.-L. Journal of the American Chemical Society 2002, 124, 8131.
(25)Cheng, X.; Noh, Y.-Y.; Wang, J.; Tello, M.; Frisch, J.; Blum, R.-P.; Vollmer, A.; Rabe, J. P.; Koch, N.; Sirringhaus, H. Advanced Functional Materials 2009, 19, 2407.
(26)Asadi, K.; Wu, Y.; Gholamrezaie, F.; Rudolf, P.; Blom, P. W. M. Advanced Materials 2009, 21, 4109.
(27)Hotchkiss, P. J.; Jones, S. C.; Paniagua, S. A.; Sharma, A.; Kippelen, B.; Armstrong, N. R.; Marder, S. R. Accounts of Chemical Research 2012, 45, 337.
(28)Kang, J. F.; Liao, S.; Jordan, R.; Ulman, A. Journal of the American Chemical Society 1998, 120, 9662.
(29)Tillman, N.; Ulman, A.; Elman, J. F. Langmuir 1989, 5, 1020.
(30)Prato, M.; Alloisio, M.; Jadhav, S. A.; Chincarini, A.; Svaldo-Lanero, T.; Bisio, F.; Cavalleri, O.; Canepa, M. The Journal of Physical Chemistry C 2009, 113, 20683.
(31)Humliček, J. In Handbook of Ellipsometry; Irene, H. G. T. A., Ed.; William Andrew Publishing: Norwich, NY, 2005, p 3.
(32)Jellison Jr, G. E. In Handbook of Ellipsometry; Irene, H. G. T. A., Ed.; William Andrew Publishing: Norwich, NY, 2005, p 237.
(33)Ulman, A. In An Introduction to Ultrathin Organic Films; Ulman, A., Ed.; Academic Press: San Diego, 1991, p 1.
(34)Graupe, M.; Takenaga, M.; Koini, T.; Colorado, R.; Lee, T. R. Journal of the American Chemical Society 1999, 121, 3222.
(35)Ramin, M. A.; Le Bourdon, G.; Daugey, N.; Bennetau, B.; Vellutini, L.; Buffeteau, T. Langmuir 2011, 27, 6076.
(36)Bracco, G.; Holst, B. Surface science techniques; Springer Science & Business Media, 2013.
(37)Tao, F.; Bernasek, S. L. Chemical Reviews 2007, 107, 1408.
(38)Kirihata, H.; Uda, M. Review of Scientific Instruments 1981, 52, 68.
(39)Bard, A. J.; Faulkner, L. R. Electrochemical methods: fundamentals and applications; Wiley New York, 1980; Vol. 2.
(40)Tao, Y.-T.; Wu, C.-C.; Eu, J.-Y.; Lin, W.-L.; Wu, K.-C.; Chen, C.-h. Langmuir 1997, 13, 4018.
(41)Van der Heide, P. X-ray photoelectron spectroscopy: an introduction to principles and practices; John Wiley & Sons, 2011.
(42)Frey, S.; Stadler, V.; Heister, K.; Eck, W.; Zharnikov, M.; Grunze, M.; Zeysing, B.; Terfort, A. Langmuir 2001, 17, 2408.
(43)Tillman, N.; Ulman, A.; Elman, J. F. Langmuir 1990, 6, 1512.
(44)Kind, M.; Wöll, C. Progress in Surface Science 2009, 84, 230.
(45)Givan, A.; Grothe, H.; Loewenschuss, A.; Nielsen, C. J. Physical Chemistry Chemical Physics 2002, 4, 255.
(46)Evans, S. D.; Urankar, E.; Ulman, A.; Ferris, N. Journal of the American Chemical Society 1991, 113, 4121.
(47)Widrig, C. A.; Chung, C.; Porter, M. D. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 310, 335.
(48)Gliboff, M.; Sang, L.; Knesting, K. M.; Schalnat, M. C.; Mudalige, A.; Ratcliff, E. L.; Li, H.; Sigdel, A. K.; Giordano, A. J.; Berry, J. J.; Nordlund, D.; Seidler, G. T.; Brédas, J.-L.; Marder, S. R.; Pemberton, J. E.; Ginger, D. S. Langmuir 2013, 29, 2166.
(49)Lu, H.; Zeysing, D.; Kind, M.; Terfort, A.; Zharnikov, M. The Journal of Physical Chemistry C 2013, 117, 18967.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top