跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏廷伊
研究生(外文):Ting-Yi Wei
論文名稱:理論計算於鋰離子電池4-vinyl-1,3,2-dioxathiolane 2-oxide 添加劑還原分解機制的研究及虛擬篩選法於高電壓鋰離子電池含碸根溶劑的設計
論文名稱(外文):Theoretical Study of Reductive Decomposition of 4-vinyl-1,3,2-dioxathiolane 2-oxide as an Additive in Lithium Ion Battery and Virtual Screening of Sulfone-Based Solvents for High-Voltage Li-Ion Batteries
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
口試委員:江志強
口試委員(外文):Jyh-Chiang Jiang
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:87
中文關鍵詞:鋰離子電池密度泛函理論添加劑還原分解鈍性膜碳酸乙烯酯有機溶劑Pipeline Pilot 9.1.0
外文關鍵詞:LIBsDensity Functional TheoryAdditiveReductive DecompositionSEI protective filmEthylene carbonateOrganic solventPipeline Pilot 9.1.0
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
因高電壓正極材料快速發展,相對地,電解液的電容及電壓需配合之,避免造成電池崩解,所以電解液的開發,為鋰離子電池發展的一大要點。本研究運用Gaussian軟體中密度泛函理論計算方法中的B3LYP函數,搭配6-311++G(d,p)基底,探討固體電解質界面(Solid Electrolyte Interphase, SEI)成膜添加劑-VDO分子的反應機制,此添加劑分子自由分佈於電解液中,在充電時,發揮功能保護陽極電極,避免有機溶劑與鋰離子共嵌入造成電崩。在考慮真空和溶劑兩種環境之下,添加劑可經由還原分解反應而得到界面薄膜主要成分,包含Li2SO3, (C2H3OSO2Li)2, CH3CH(OSO2Li)CH2OCO2Li。
此研究另外一部分則以虛擬篩選的方法挑選出有潛力的碸系溶劑分子,此方法可以提供實驗人員免於複雜且多餘的合成程序,大範圍地篩選出合適且極具潛能的材料,碸系溶劑分本身具備高氧化穩定性、熱穩定性、燃點高,所以適合用於高電壓離離子電池中當溶劑使用,此次挑選Ethyl methyl sulfone (EMS)當做核心分子,考慮強中弱的拉、推電子基,取代兩側碳上的氫,ChemAxon則可建構出分子資料庫,可能的分子共264個。使用Pipeline pilot軟體搭配PM6半經驗法,先設計出工作流程圖計算各個結構最佳化能量及電化學性質,最後篩選出來為含氟及含氰的分子擁有氧化電位大於7V及electrochemical window大於10.0eV,還有像是電子親和力、游離能、化學硬度皆比核心分子(EMS)性質佳。最後,並再進一步探討還原及氧化分解反應,發現皆為吸熱反應,相較於酯類溶劑具更佳的電化學穩定性,適合存在高電壓鋰離子電池的電解液中。
Lithium ion batteries (LIBs) have been used as power sources for advanced portable devices owing to their high energy density and availability in a wide temperature. In a typical LIB system, a protective film called solid electrolyte interface (SEI) usually will be formed on the negative electrode surface. The understanding of the formation mechanism and components of this film is mandatory as it dictates the overall battery performance.
Although the amount of additive in an electrolyte composition is not much, it substantially plays an important role and could affect the efficiency and stability of the lithium ion battery. In this study, we have investigated the reductive decomposition mechanism and film forming ability of the theoretically designed electrolyte additive, 4-vinyl-1,3,2-dioxathiolane2 -oxide (VDO), which is a derivative of ethylene sulfite, a well-known additive. Based on our DFT calculations, VDO, with lower LUMO, tends to reduce initially prior to EC or PC. In terms of the reductive decomposition of VDO, (VDO-)Li+(EC) and (VDO-)Li+(EC)2, the final primary products which could form the protective SEI film were found to be Li2SO3, (C2H3OSO2Li)2, CH3CH(OSO2Li)CH2OCO2Li.
Even though the demand for novel materials with specific properties increases significantly, the search for materials using experimental procedures is hindered by high costs and time-consuming procedures of synthesis. An alternative and new approach is to use theoretical methods to systematically design and screen components within a short period. In the second part of this thesis, we computational approaches to design a potential solvent structure based on an experimentally reported sulfone solvent, EMS.
Virtual molecular structure library, consisting of 264 compounds, based on EMS as a core structure were generated by employing R-group enumeration scheme using ChemAxon's Markush enumeration. The selected R-groups were included strong, moderate and weak functional groups. Virtual computational screening using Pipeline Pilot 9.1.0 was then carried out to identify potential solvents derived from EMS. Molecular properties were selected as descriptors relative to EMS and calculated using the PM6 semiempirical quantum method. To illustrate the potential selected molecules and the screening technique, we apply density functional theory (DFT) method to compute some specific properties of each molecule and compared with EMS. Among the screened candidates, fluorinated and cyano solvents, showed better oxidative stability (>7V), broad electrochemical window (>10.0eV). Moreover, other molecular properties such as chemical hardness, electron affinity, ionization potential, were found to be better than EMS. One-electron reductive and oxidative decomposition reaction mechanism studies for selected candidates were also performed and all were endothermic reactions.
Abstract i
摘要 iii
Acknowledgements iv
誌謝 v
Table of Contents vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Introduction of Lithium Ion Battery 1
1.2 The Working Principle of Lithium Ion Battery 4
1.3 Main Components of Li Ion Battery 6
1.3.1 Cathodes 6
1.3.2 Anodes 9
1.3.3 Electrolyte 11
1.4 Aim of the Thesis 19
Chapter 2 . Reductive Decomposition of VDO: A Film-Forming Electrolyte Additive in Lithium Ion Battery 20
2.1 Computational Details 20
2.2 Results and Discussion 21
2.2.1 Li+ solvation properties in VDO based electrolytes 21
2.2.2 Reductive decomposition mechanism of VDO in vacuum and solvent 22
2.2.3 Effect of salt in the reductive decomposition of VDO 27
Chapter 3 Virtual Screening of Sulfone-based Electrolyte Solvents 36
3.1 Computational Details 36
3.2 Results and Discussion 39
3.2.1 Generation of molecular Library 39
3.2.2 Effect of Substituents on Core Structure 40
3.2.3 Oxidative decomposition reactions of the selected molecules 48
3.2.4 Reductive decomposition reactions of the selected molecules. 56
Chapter 4 Conclusions 64
References 66
1.Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
2.M. Armand , J.M.T., Nature, 2008. 451, 652-657.
3.Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. Journal of The Electrochemical Society, 1979. 126(12): p. 2047-2051.
4.M. D. Bhattab, C.O.D., Phys.Chem.Chem.Phys., 2015. 17: p. 4799.
5.A. Abouimrane, I.B., K. Amine, Electrochemistry Communications 2009. (11)1073-1076.
6.X.H. Ma, B.K., G. Ceder, Journal of the Electrochemical Society, 2010. 157(4): p. A925.
7.T. Kazda, J.V., V. Di Noto, M. Sedlaříková, P Čudek, L. Omelka, L. Šafaříková, V. Kašpárek, J Solid State Electrochem, 2015. 19:1579–1590.
8.Q. Zhong, A.B., M. Zhang, Y. Gao and J. R. Dahn, J, Electrochem. Soc., 1997. 144, 205.
9.J. Demeaux, E.D.V., M. L. Digabel, H. Galiano, B. C. Montigny, D. Lemordant, Phys Chem Chem Phys., 2014. 16(11): p. 5201-5212.
10.N. Twu, X.L., A. Urban, M. Balasubramanian, J. Lee, L. Liu, and G. Ceder., Nano Lett., 2014. 15 (1): p. 596-602.
11.A. Iturrondobeitia, A.G., I. G. d. Muro, L. Lezama, C. Kim, M. Doeff, J. Cabana, and T. Rojo., Inorg. Chem., 2015. 54(6): p. 2671–2678.
12.L. Xing, W.T., J. Vatamanu, Q. Liu, W. Huang, and H.Z. Y. Wang, R. Zeng, W. Li, Electrochimica Acta 2014. 133 p. 117-122.
13.Xu, K., Chem. Rev., 2004. 104, 4303-4417.
14.L. Xing, O.B., G. D. Smith, W. Li, J. Phys. Chem. A. 115: p. 13896-13905.
15.L.D. Xing, C.Y.W., W.S. Li, M.Q. Xu, X.L. Meng, S.F. Zhao, J Phys Chem B, 2009. 113: p. 5181-5187.
16.W. Patrick Walters, M.T.S.a.M.A.M., Drug Discovery Today, 1998. 3(4): p. 160-178.
17.Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 2014. 114(23): p. 11503-11618.
18.D. Linden, T.B.R., Handbook of Batteries (3rd Edition). 2002: The McGraw-Hill Companies, Inc.
19.M. Winter, J.O.B., M. E. Spahr, P. Novµk, Advanced Materials, 1998. 10 (10), 725-763.
20.Y. Itou, Y.U., Journal of Power Sources, 2005. 146, 39-44.
21.H. Li, Z.W., L. Chen, X. Huang, Advanced Materials, 2009. 21, 4593-4607.
22.J. B. Goodenough, Y.K., Chem. Mater., 2010. 22, 587-603.
23.J. M. Tarascon, D.G., Electrochim. Acta, 1993. (38), 1221-1231.
24.J. M. Tarascon, W.R.M., F. Coowar, T. N. Bowmer,G. Amatucci, D. Guyomard, J. Electrochem. Soc., 1994. (141),1421-1431.
25.G.G. Amatucci, C.N.S., A. Blyr, C. Sigala, A.S. Gozdz, D. Larcher, J.M. Tarascon J. Power Sources, 1997. (69) 11-25
26.T.J. Patey, R.B., S.H. Ng, F. Krumeich, S.E. Pratsinis,P.Novák, Journal of Power Sources 2009. (189)149-154.
27.S.Y. Chew, T.J.P., O.Waser, S.H. Ng, R. Büchel, A. Tricoli, F. Krumeich,J.Wang, H.K. Liu, S.E. Pratsinis,P.Novák, Journal of Power Sources 2009. (189)449-453.
28.Y. Xia, Y.Z., M. Yoshio, J. Electrochem. Soc., 1997. 144(8): p. 2593-2600.
29.Y. Xia, N.K., M. Yoshio, Journal of Power Sources 2000. (90)135-138.
30.M. R. Palacín, Y.C., L. Dupont, M. Hervieu, P. Strobel, G. Rousse, . Masquelier, M. Anne, G. G. Amatucci, J. M. Tarascon, Journal of The Electrochemical Society, 2000. 147 (3) 845-853.
31.M. Wakihara, O.Y. 1998, Tokyo: WILEY-VCH Verlag GmbH, Weinheim.
32.A. Manthiram, J.K., Chem. Mater., 1998. 10, 2895-2909.
33.T. Ohzuku, A.U., M. Kouguch, J Electrochem Soc, 1995. 142(12): p. 4033-4039.
34.H. Arai , S.O., Y. Sakurai, J.-i. Yamaki, Solid State Ionics, 1998. (109)295-302.
35.R. Stoyanova, E.Z., R. Alca´ntara, J. L. Tirado, G. Bromiley, F. Bromiley, T. Boffa Ballaran, Solid State Ionics, 2003. (161)197-204.
36.S. Albrechta, J.K., M. Kruft, S. Malcus, C. Vogler, M. Wahl, M. Wohlfahrt-Mehrens, Journal of Power Sources, 2003. (119-121),178-183.
37.M. Guilmard, L.C., D. Denux, C. Delmas, Chem. Mater. , 2003. 15, 4476-4483.
38.Y. Kim, D.K., S. Kang, Chem. Mater. , 2011. (23), 5388-5397.
39.L.L. Zhang, Y.L.M., C.Y. Du, G.P. Yin, Progress in Chemistry, 2014. (26), 553-559.
40.C. Nithya, V.S.S.K., S. Gopukumar, Phys. Chem.Chem.Phys, 2011. (13), 6125-6132.
41.D. Doughty, E.P.R., Electrochemical Society Interface, 2012. 21(2): p. 37-44.
42.D. Liu, W.Z., J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. M. Julien, J. B. Goodenough, K. Zaghib, RSC Adv., 2014. (4),154.
43.A. Abouimrane, O.C.C., K. Amine, S. T. Nguyen, J. Phys. Chem. C, 2010. (114)12800-12804.
44.M. Inaba, Z.O., IEEE Electrical Insulation Magazine, 2001. 17(6).
45.Yi, T.-F., et al., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 2010. 71(9): p. 1236-1242.
46.Sun, X., P.V. Radovanovic, and B. Cui, Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New Journal of Chemistry, 2015. 39(1): p. 38-63.
47.Zhang, S.S., The effect of the charging protocol on the cycle life of a Li-ion battery. Journal of Power Sources, 2006. 161(2): p. 1385-1391.
48.S.-L. Chou, J.-Z.W., H.-K. Liu, S.-X. Dou, J. Phys. Chem. C 2011. (115),16220-16227.
49.T.-F. Yi, Y.X., J. Shu, Z. Wang, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, J. Electrochem. Soc., 2011: p. 158(3)A266-A274.
50.L. Xue, S.-Y.L., Z. Zhao, C. A. Angell, Journal of Power Sources 2015. (295) 190-196.
51.Y. Watanabe, S.-i.K., S. Wada, K. Hoshino, H. Morimoto, S.-i. Tobishima, Journal of Power Sources 2008. (179)770-779.
52.X. Sun, C.A.A., Electrochemistry Communications 2009. (11)1418-1421.
53.K. Xua, C.A.A., Journal of The Electrochemical Society, 2002. 149(7): p. A920-A926.
54.Scheers, J., New anions for lithium battery electrolytes. 2011: Chalmers University of Technology.
55.Xu, K. and A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9849-9864.
56.Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
57.M. Yoshio, R.J.B., A. Kozawa, Lithium-Ion Batteries. Role-Assigned Electrolytes: Additives. 2009: Springer Science+Business Media.
58.V. Aravindan, J.G., H.-K. Liu, Chem. Eur. J. , 2011. (17)14326-14346.
59.D. Aurbach, Y.E.-E., B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, H. Yamin, J. Electrochem. Soc., 1995. (142)2882-2890.
60.Xu, K., Chem. Rev. , 2004. (104)4303-4417.
61.M.l S. Ding, T.R.J., J Electrochem Soc, 2004. 151(12)A2007-A2015.
62.X. Zuo, C.F., J. Liu, X. Xiao, J. Wu, J. Nan, J Electrochem Soc, 2013. (160)A1199-A1204.
63.B. Markovsky, F.A., H. E. Gottlieb, Y. Gofer, S. K. Martha, D. Aurbach, Journal of The Electrochemical Society, 2010. (157)4, A423-A429.
64.S.S. Zhang, T.R.J., Journal of Power Sources, 2002. (109)458-464.
65.Kanamura, K., Journal of Power Sources 1999. (81-82)123-129.
66.K. Kanamura, T.U., S. Shiraishi, M. Ohashi, Z.-i. Takehara, Journal of The Electrochemical Society, 2002. 149(2): p. A185-A194.
67.L. J. Krause, W.L., J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski Journal of Power Sources 1997. (68) 320-325
68.H. Yang, K.K., T. M. Devine, J. W. Evans, Journal of The Electrochemical Society, 2000. 147(12): p. 4399-4407.
69.M. Morita, T.S., N. Yoshimoto, M. Ishikawa, Electrochimica Acta 2002. (47)2787.
70.Zhang, X., et al., Electrochemical and infrared studies of the reduction of organic carbonates. Journal of The Electrochemical Society, 2001. 148(12): p. A1341-A1345.
71.Webber, A., J. Electrochem. Soc., 1991. (138)2586-2590.
72.J. Foropoulos, D.D.D., Inorg. Chem. , 1984. (23) 3720-3723.
73.L. Peter, J.A., J. Appl. Electrochem, 1999. (29)1053-1061.
74.M. Yoshio, H.N., H. Yoshitake, S. Tanaka, L. Ube Industries, Editor. 1996.
75.B. Scrosati, K.M.A., W. V. Schalkwijk, J. Hassoun. 2013: JohnWiley & Sons, Inc., Hoboken, New Jersey.
76.H.-H. Lee, Y.-Y.W., C.-C. Wan, M.-H. Yang, H.-C. Wu, D.-T. Shieh, Journal of Applied Electrochemistry, 2005. (35)615-623.
77.A. M. Andersson, K.E., J. Electrochem. Soc., 2001. (148)A1100-A1109.
78.H. Ota, T.S., H. Suzuki, T. Usami, J. Power Sources, 2001. (97-98)107-113.
79.W. Yao, Z.Z., J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Energy Environ. Sci., 2009. (2)1102-1108.
80.G.H. Wrodnigg, J.O.B., M. Winter, J. Power Sources, 2001. (97-98)592-594.
81.Y.-K. Han, S.U.L., J.-H. Ok, J.-J. Cho, H.-J. Kim, Chemical Physics Letters 2002. (360)359-366.
82.L. Xing, W.L., M. Xu, T. Li, L. Zhou, Journal of Power Sources 2011. (196)7044-7047.
83.Zhang, S.S., Journal of Power Sources, 2006. (162) 1379-1394.
84.Y. E.-Eli, S.R.T., V. R. Koch, 1996. J. Electrochem. Soc. (143)L195-L197.
85.R. Chen, F.W., Li Li, Y. Guan, X. Qiu, S. Chen, Y. Li, S. Wu, Journal of Power Sources, 2007. (172)395-403.
86.B. T. Yu, W.H.Q., F. S. Li, L. Cheng, Journal of Power Sources, 2006. (158)1373-1378.
87.Wrodnigg, G.H., J.O. Besenhard, and M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium‐Ion Cells with Graphitic Anodes. Journal of The Electrochemical Society, 1999. 146(2): p. 470-472.
88.G. H. Wrodnigg, J.O.B., M. Winter, Journal of The Electrochemical Society, 1999. 146(2)470-472.
89.T.-F. Yi, S.-Y.Y., Y. Xie, J. Mater. Chem., 2015. (3)5750-5777.
90.R. Santhanam, B.R., Journal of Power Sources 2010. (195)5442-5451.
91.T.P. Pogrebnaya, A.D.B., Phys. Rev. A 38 (1988) 3098e3100., Phys. Rev. A, 1988. (A38)3098-3100.
92.C. Lee, W.Y., R.G. Parr, Phys. Rev. B, 1988. (37)785-789.
93.S.H. Vosko, L.W., M. Nusair, Can. J. Phys., 1980. (58)1200-1211.
94.Frisch, M.J.P., J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265-3269.
95.M.J. Frisch, G.W.T., H.B. Schlegel, G.E. Scuseria, M.A. Robb,, et al., 2009.
96.M. D. Bhatt, C.O.D., Current Applied Physics 2014. (14)349-354.
97.E. G. Leggesse, J.-C.J., J. Phys. Chem. A, 2012. (116) 11025-11033.
98.V. Barone, M.C., J. Phys. Chem. A 1998. (102)1995-2001.
99.X. Zhang, R.K., T. J. Richardson, J. K. Pugh, P. N. Ross, Jr., J Electrochem Soc, 2001. 148(12)A1341-A1345.
100.Setzer, W.N.S., P.v.R., Adv. Organomet. Chem., 1985. (24)353-451.
101.Hubberstey, P., Coord. Chem. Rev., 1986. (75)1-99.
102.Hubberstey, P., Coord. Chem. Rev., 1985. (66)1-92.
103.U. Olsher , R.M.I., J. S. Bradshaw , N. K. Dalley, Chem. Rev., 1991. (91)137-164.
104.Pearson, R.G., J. Am. Chem. SOC., 1963. (85)3533-3539.
105.M. Head-Gordon, J.A.P., J. Chem. Phys. Lett., 1998. (153) 503-506.
106.M. Ue, A.M., S. Nakamura, J. Electrochem. Soc., 2002. (149) A1572-A1577.
107.H. Maeshima, H.M., A. Kuwabara,C. A. J. Fisher, J Electrochem Soc, 2010. 157(6)A696-A701.
108.Pipeline, Pilot, SciTegic Inc., San Diego, CA, USA.
109.Accelrys, BIOVIA MATERIALS STUDIO OVERVIEW. 2015.
110.Rong, H.B., et al., Performance improvement of graphite/LiNi0.4Co0.2Mn0.4O2 battery at high voltage with added Tris (trimethylsilyl) phosphate. Journal of Power Sources, 2015. 274: p. 1155-1161.
111.T. Husch, N.D.Y., A. Balducci, M. Korth, Phys.Chem.Chem.Phys., 2015. (17)3394-3401.
112.Z. Bikadi, E.H., Journal of Cheminformatics, 2009: p. 1-15.
113.N. Shao, X.-G.S., S. Dai, D.E Jiang, J. Phys. Chem. B, 2011. (115)12120-12125.
114.www.chemaxon.com.
115.J. Maca, M.F., M. Sedlarikova, International Conference on Renewable Energies and Power Quality, 2013. ISSN 2172-038 X, No.11.
116.Y.-K. Hana, K.L., S. C. Jung, Y. S. Huh, Computational and Theoretical Chemistry 2014. (1031)64-68.
117.N. Azimi, Z.X., N. D. Rago, C. Takoudis, M. L. Gordin, J. Song, D. Wang, Z. Zhang, J. Electrochem. Soc., 2015. 162 (1) A64-A68.
118.Z. Zhang, L.H., H. Wu, W. Weng, M. Koh, P. C. Redfern, L. A. Curtiss, K. Amine, Energy Environ. Sci., 2013. (6)1806-1810.
119.T. Achiha, T.N., M. Koh, A. Yamauchi, M. Kagawa, H. Aoyama, Y. Ohzawa, J Electrochem Soc, 2010. 157(6)A707-A712.
120.J. Kalhoff, S.P., G. G. Eshetu, D. Bresser, Chem Sus Chem 2015. (8)2154-2175.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top