( 您好!臺灣時間:2024/04/17 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yu-Ting Chang
論文名稱(外文):Researches of User Behavior in Social Media Marketing
指導教授(外文):Hsi-Peng LuHueiju Yu
口試委員(外文):Hsi-Peng LuHueiju Yu
外文關鍵詞:cost benefit approachelaboration likelihood modeluser behaviorsocial media marketingexperience innovation
  • 被引用被引用:0
  • 點閱點閱:851
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
From the perspective of marketing action plan, this study provides three marketing strategies to enhance awareness, affections, and acquirement. The strategy perspectives will be verified by different theoretical basis and research architectures, and generalize the topic of marketing research through Doblin’s experience innovation framework. The expected contribution of this study is to provide social media marketing strategy insights for firms in undertaking mobile commerce and social commerce. The future direction for further research will also be addressed.
In the first study, the awareness of communication strategy grasps messages persuasiveness, leading consumers in common dissemination. Social media marketing is an influential marketing method. Liking or sharing social media messages can increase the effects of popular cohesion and message diffusion. This research investigates how persuasive messages (i.e. argument quality, post popularity, and post attractiveness) can lead internet users to click like and share messages in social media marketing activities. This research develops the hypotheses on the basis of elaboration likelihood model and a 392 fans survey from a fan page on Facebook. Structural equation modeling analyzes questionnaire data. Results show that the three types of persuasive messages are important to click like and to share post messages. Post popularity is essential and works through both central route and peripheral according to research model. In addition, different message characteristics and user groups have different communicating behaviors.
In the second study, the affections of emotion strategy changes consumer’s brand attitude in the use of storytelling rendering. Social media widely spread and instantly share messages. This feature accelerates the prevalence of using micro-film as a compelling tool for branding. Based on the storytelling theory of emotional responses, sympathy and empathy, and the persuasion theory of elaboration likelihood model, this study develops hypotheses to test the relationship between the storytelling power embedded in micro-films on brand attitude, and the moderating effect of cognitive involvement on the overall effect. The data collected from YouTube users in Taiwan has confirmed the positive relationship between sympathy and empathy on brand attitude, and the moderating effect of cognitive involvement. Implications are discussed.
In the third study, the acquirement of engagement strategy links consumer’s joint participation through media connecting. Mobile-social networking services have been developed rapidly recent years. Users’ online engagement and switching behavior have also become quite important issues. This research combined the basis of cost benefit approach and experience innovation. By analyzing 420 valid questionnaires, we found that different types of online-engagement in the different age groups, have differences in the impact of switching cost and switching benefit. Also, switching cost can thus affect group switching via lock-in.
摘要 I
誌謝 V
1.1 Background and motivation 1
1.2 Research questions and purposes 4
2.1 Online marketing evolution 7
2.2 Marketing strategy 9
2.3 ELM theory and Involvement 11
2.4 Cost benefit approach 13
2.5 Storytelling, Empathy and Sympathy 15
3.1 Introduction 16
3.2 Research Model 17
3.3 Data analysis and results 21
3.4 Discussion 30
4.1 Introduction 33
4.2 Research Model 35
4.3 Methodology 38
4.4 Data analysis and results 41
4.5 Discussion and Conclusion 44
5.1 Introduction 47
5.2 Research Model 50
5.3 Data analysis 53
5.4 Discussion 58
6.1 Theoretical implications 60
6.2 Managerial implications 60
6.3 Limitations 61
6.4 Future research 61
Ahearne, M., Gruen, T. W., & Jarvis, C. B. (1999). If looks could sell: Moderation and mediation of the attractiveness effect on salesperson performance. International Journal of Research in Marketing, 16(4), 269–284.
Angst, C. M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy concerns: the elaboration likelihood model and individual persuasion. Mis Quarterly, 33(2), 339-370.
Arora, A., Forman, C., & Yoon, J. W. (2010). Complementarity and information technology adoption: Local area networks and the Internet. Information Economics and Policy, 22(3), 228-242.
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459–489.
Bampo, M., Ewing, M. T., Mather, D. R., Stewart, D., & Wallace, M. (2008). The effects of the social structure of digital networks on viral marketing performance. Information Systems Research, 19(3), 273-290.
Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595–1600.
Berger, J. (2013). Contagious: Why Things Catch On. New York, MA: Simon & Schuster.
Berghout, E., Nijland, M., & Powell, P. (2011). Management of lifecycle costs and benefits: Lessons from information systems practice. Computers in Industry, 62(7), 755-764.
Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229–254.
Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS Quarterly, 30(4), 805–825.
Buil, I., de Chernatony, L., & Martinez, E. (2013). Examining the role of advertising and sales promotions in brand equity creation. Journal of Business Research, 66(1), 115-122.
Calder, B. J., Malthouse, E. C., & Schaedel, U. (2009). An Experimental Study of the Relationship between Online Engagement and Advertising Effectiveness. Journal of Interactive Marketing, 23(4), 321–331.
Camarero, C., & San Jose, R. (2011). Social and attitudinal determinants of viral marketing dynamics. Computers in Human Behavior, 27(6), 2292–2300.
Carmen, R.–S. M., Gonzalez-Fernandez, A. M., & Cervantes-Blanco, M. (2013). An analysis of the construct "involvement" in consumer behavior. Quality & Quantity, 47(2), 1105-1123.
Chakrabarty, S., & Yelkur, R. (2005). The Effects of Ad Irritation on Brand Attitudes. Journal of Promotion Management, 11(2/3), 37-48.
Cheng, X., & Liu, J. (2012). Exploring Interest Correlation for Peer-to-Peer Socialized Video Sharing. Acm Transactions on Multimedia Computing, Communications and Applications, 8(1), 5:1-5:20.
Cheung, C. M. K., & Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24–30.
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470.
Chiu, H.-C., Hsieh, Y.-C., & Kuo, Y.-C. (2012). How to Align your Brand Stories with Your Products. Journal of Retailing, 88(2), 262-275.
Chu, P., & Spires, E. (2003). Perceptions of accuracy and effort of decision strategies. Organizational Behavior and Human Decision Processes, 91(2), 203-214.
Costanzo, P. J., & Goodnight, J. E. (2005). Celebrity Endorsements: Matching Celebrity and Endorsed Brand in Magazine Avertisements. Journal of Promotion Management, 11(4), 49-62.
Coulter, K. S., & Punj, G. N. (2004). The effects of cognitive resource requirements, availability, and argument quality on brand attitudes—A melding of elaboration likelihood and cognitive resource matching theories. Journal of Advertising, 33(4), 53–64.
D'Alessandro, S., & Chitty, B. (2011). Real or Relevant Beauty? Body Shape and Endorser Effects on Brand Attitude and Body Image. Psychology & Marketing, 28(8), 843-878.
De Vriesa, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2), 83–91.
Dentsu. SIPS. Available at: http://www.dentsu.co.jp/sips/index.html. (accessed January, 2011).
Di Blasio, P., & Milani, L. (2008). Computer-mediated communication and persuasion: Peripheral vs. central route to opinion shift. Computers in Human Behavior, 24(3), 798–815.
Doblin, “Ten Types of Innovation: The Discipline of Building Breakthroughs.” Retrieved from http://www.doblin.com/tentypes/
Escalas, J. E., & Stern, B. B. (2003). Sympathy and Empathy: Emotional Responses to Advertising Dramas. Journal of Consumer Research, 29(4), 566-578.
Escalas, J. E. (2004). Narrative Processing: Building Consumer Connections to Brands. Journal of Consumer Psychology, 14(1/2), 168-180.
Fog, K., Budtz, C., Munch, P., & Blanchette, S. (2010). Storytelling:Branding in Practice (2th ed.). Heidelberg, MA: Springer-Verlag.
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Goncalves, H. M., & Sampaio, P. (2012). The customer satisfaction-customer loyalty relationship Reassessing customer and relational characteristics moderating effects. Management Decision, 50(9), 1509 - 1526.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276–286.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. London: Prentice Hall.
He, W., Qiao, Q., & Wei, K.-K. (2009). Social relationship and its role in knowledge management systems usage. Information & Management, 46(3), 175–180.
Hellmer, S. (2010). Switching costs, switching benefits and lock-in effects – the rergulated swedish heat market. Energy & Environment, 21(6), 563-575.
Hernandez, B., Montaner, T., Javier Sese, F., & Urquizu, P. (2011). The role of social motivations in e-learning: How do they affect usage and success of ICT interactive tools? Computers in Human Behavior, 27(6), 2224-2232.
Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: An empirical comparison. Journal of Marketing, 75(6), 55–71.
Ho, J. Y. C., & Dempsey, M. (2010). Viral marketing: Motivations to forward online content. Journal of Business Research, 63(9–10), 1000–1006.
Hou, A. C. Y., Chern, C.-C., Chen, H.-G., & Chen, Y.-C. (2011). ‘Migrating to a new virtual world’: Exploring mmorpg switching through human migration theory. Computers in Human Behavior, 27(5), 1892–1903.
Hsu, C.-L., & Lin, J. C.-C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65–74.
Hsu, J. S.-C. (2014). Understanding the role of satisfaction in the formation of perceived switching value. Decision Support Systems, 59, 152-162.
Imlawi, J., & Gregg, D. (2014). Engagement in Online Social Networks: The Impact of Self-Disclosure and Humor. International Journal of Human-Computer Interaction, 30(2), 106-125.
International Data Corporation. Europe, Middle East and Africa Service Provider Opportunities on the 3rd Platform. Available at: http://www.idc.com/getdoc.jsp?containerId=IDC_P31385. (accessed 2014).
Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33, 692-724.
Kaplan, A. M., & Haenlein, M. (2011). Two hearts in three-quarter time: How to waltz the social media/viral marketing dance. Business Horizons, 54(3), 253-263.
Karnik, A., Saroop, A., & Borkar, V. (2013). On the diffusion of messages in on-line social networks. Performance Evaluation, 70(4), 271–285.
Kim, A. J. & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480-1486.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and Satisfaction, Two Stepping Stones for Successful E-Commerce Relationships: A Longitudinal Exploration. Information Systems Research, 20(2), 237-257.
Kim, G., Shin, B., & Lee, H. G. (2006). A study of factors that affect user intentions toward email service switching. Information & Management, 43(7), 884-893.
Kim, H., & Yoon, C. (2004). Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommunications Policy, 28(9-10), 751-765.
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: a status quo bias perspective. MIS Quarterly, 33(3), 567-582.
Kim, J. U., Kim, W. J., & Park, S. C. (2010). Consumer perceptions on web advertisements and motivation factors to purchase in the online shopping. Computers in Human Behavior, 26(5), 1208–1222.
Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480–1486.
Kim, S. S., & Son, J.-Y. (2009). Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the content of online services. MIS Quarterly, 33(1), 49–70.
Laroche, M., Habibi, M. R., Richard, M.-O., & Sankaranarayanan, R. (2012). The effects of social media based brand communities on brand community markers, value creation practices, brand trust and brand loyalty. Computers in Human Behavior, 28(5), 1755-1767.
Lee, A. Y., Keller, P. A., & Sternthal, B. (2010). Value from regulatory construal fit: The persuasive impact of fit between consumer goals and message concreteness. Journal of Consumer Research, 36(5), 735–747.
Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331–339.
Lee, D., Kim, H. S., & Kim, J. K. (2012). The role of self-construal in consumers' electronic word of mouth (eWOM) in social networking sites: A social cognitive approach. Computers in Human Behavior, 28(3), 1054-1062.
Lee, G., & Xia, W. (2011). A longitudinal experimental study on the interaction effects of persuasion quality, user training, and first-hand use on user perceptions of new information technology. Information & Management, 48(7), 288–295.
Lee, K. C., Chung, N., & Lee, S. (2011). Exploring the influence of personal schema on trust transfer and switching costs in brick-and-click bookstores. Information and Management, 48(8), 364-370.
Lee, M.-C. (2009). Understanding the behavioural intention to play online games An extension of the theory of planned behaviour. Online Information Review, 33(5), 849-872.
Lee, W.-K. (2012). An elaboration likelihood model based longitudinal analysis of attitude change during the process of IT acceptance via education program. Behaviour & Information Technology, 31(12), 1161-1171.
Li, H., Zhang, J., & Sarathy, R. (2010). Understanding compliance with internet use policy from the perspective of rational choice theory. Decision Support Systems, 48(4), 635-645.
Lu, J., Liu, C., Yu, C.-S., & Wang, K. (2008). Determinants of accepting wireless mobile data services in China. Information & Management, 45(1), 52–64.
McKinsey. A new way to measure word-of-mouth marketing. Available at: http://www.mckinsey.com/insights/marketing_sales/a_new_way_to_measure_word-of-mouth_marketing. (accessed April, 2010)
Mccracken, G. (1989). Who is the celebrity endorser? Cultural foundations of the endorsement process. Journal of Consumer Research, 16(3), 310-321.
McKee, R. (2003). Storytelling That Moves People. Harvard Business Review, 81(6), 51-55.
Mittins, M., Abratt, R., & Christie, P. (2011). Storytelling in reputation management: the case of Nashua Mobile South Africa. Management Decision, 49(3/4), 405-421.
Murray, K. B., & Haeubl, G. (2011). Freedom of choice, ease of use, and the formation of interface preferences. MIS Quarterly, 35(4), 955–976.
Murray, K. B., & Haubl, G. (2007). Explaining cognitive lock-in: The role of skill-based habits of use in consumer choice. Journal of Consumer Research, 34(1), 77-88.
Narayanan, M., Asur, S., Nair, A., Rao, S., Kaushik, A., Mehta, D., Athalye, S., Malhotra, A., Almeida, A., & Lalwani, R. (2012). Social Media and Business, Vikalpa: The Journal for Decision Makers, 37(4), 69-111.
Nowak, K. L. (2013). Choosing Buddy Icons that look like me or represent my personality: Using Buddy Icons for social presence. Computers in Human Behavior, 29(4), 1456-1464.
Pagani, M., & Mirabello, A. (2012). The Influence of Personal and Social-Interactive Engagement in Social TV Web Sites. International Journal of Electronic Commerce, 16(2), 41-67.
Papadatos, C. (2006). The art of storytelling: how loyalty marketers can build emotional connections to their brands. Journal of Consumer Marketing, 23(7), 382–384.
Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business Research, 62(1), 61–67.
Park, D.-H., & Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399–410.
Park, D.-H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398.
Park, J.-H. (2014). The effects of personalization on user continuance in social networking sites. Information Processing & Management, 50(3), 462-475.
Park, S. C., & Ryoo, S. Y. (2013). An empirical investigation of end-users' switching toward cloud computing: A two factor theory perspective. Computers in Human Behavior, 29(1), 160-170.
Parra-Lopez, E., Buichand-Gidumal, J., Gutierrez-Tano, D, & Diaz-Armas, R. (2011). Intentions to use social media in organizing and taking vacation trips. Computers in Human Behavior, 27(2), 640-654.
Pellas, N. (2014). The influence of computer self-efficacy, metacognitive self-regulation and self-esteem on student engagement in online learning programs: Evidence from the virtual world of Second Life. Computers in Human Behavior, 35, 157-170.
Petty, R. E., & Cacioppo, J. T. (1986). Communication and persuasion: Central and peripheral routes to attitude change. New York, MA: Springer-Verlag.
Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal Involvement as a Determinant of Argument-Based Persuasion. Journal of Personality and Social Psychology, 41(5), 847-855.
Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement. Journal of Consumer Research, 10(Sep), 135-146.
Polites, G. L., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21-42.
Rice, D. H., Kelting, K., & Lutz, R. J. (2012). Multiple endorsers and multiple endorsements: The influence of message repetition, source congruence and involvement on brand attitudes. Journal of Consumer Psychology, 22(2), 249-259.
Rogers, E.M. (1995). Diffusion of innovations. New York: Free Press.
Rossiter, J. R., & Percy, L. (1991). Emotions and motivations in advertising. Advances in Consumer Research, 18(1), 100–110.
Sell, S. (2012). Micro movies with major reach. Campaign Asia – Pacific, Hong Kong:United Kingdom, 68-68.
Sengupta, J., Goodstein, R. C., & Boninger, D. S. (1997). All cues are not created equal: Obtaining attitude persistence under low-involvement conditions. Journal of Consumer Research, 23(4), 351-361.
Shank, R.C., & Abelson, R.P. (1995). Knowledge and Memory: The Real Story. in R. S. Wyer, Jr. (ED). Knowledge and memory: The Real Story. Hillsdale, NJ:LawrenceErlbaum Associates, Inc.
Shin, D.-H., & Kim, W.-Y. (2008). Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability. Technological Forecasting and Social Change, 75(6), 854-874.
Sinclair, R. C., Moore, S. E., Mark, M. M., Soldat, A. S., & Lavis, C. A. (2010). Incidental moods, source likeability, and persuasion: Liking motivates message elaboration in happy people. Cognition and Emotion, 24(6), 940–961.
Small, D. A., & Verrochi, N. M. (2009). The Face of Need: Facial Emotion Expression on Charity Advertisements. Journal of Marketing Research, 46(6), 777-787.
Solomon, M. R. (2011). Consumer Behavior: buying, having, and being (10th ed.). New Jersey, MA: Prentice Hall.
Stern, B. B. (1994). Classical and Vignette Television Advertising Dramas: Structural Models, Formal Analysis, and Consumer Effects. Journal of Consumer Research, 20(4), 601-615.
Stokburger-Sauer, N., Ratneshwar, S., & Sen, S. (2012). Drivers of consumer-brand identification. International Journal of Research in Marketing, 29(4), 406-418.
Su, H.-J., Comer, L. B., & Lee, S. (2008). The Effect of Expertise on Consumers' Satisfaction with the Use of Interactive Recommendation Agents. Psychology & Marketing, 25(9), 859-880.
Sun, Y., Fang, Y., & Lim, K. H. (2014). Understanding knowledge contributors' satisfaction in transactional virtual communities: A cost-benefit trade-off perspective. Information & Management, 51(4), 441-450.
Tang, L., Jang, S., & Morrison, A. (2012). Dual-route communication of destination websites. Tourism Management, 33(1), 38-49.
Tsang, M.M., Ho, S.C., & Liang, T.P. (2004). Consumer attitudes toward mobile advertising: An empirical study. International Journal of Electronic Commerce, 8(3), 65-78.
Verhagen, T., Feldberg, F., van den Hooff, B., Meents, S., & Merikivi, J. (2012). Understanding users' motivations to engage in virtual worlds: A multipurpose model and empirical testing. Computers in Human Behavior, 28(2), 484–495.
Verhoeven, P. (2008). Who's in and who's out? Studying the effects of communication management on social cohesion. Journal of Communication Management, 12(2), 124-135.
Vijayasarathy, L., & Turk, D. (2012). Drivers of agile software development use: Dialectic interplay between benefits and hindrances. Information and Software Technology, 54(2), 137-148.
Wang, W.-T., & Li, H.-M. (2012). Factors influencing mobile services adoption: a brand-equity perspective. Internet Research, 22(2), 142-179.
Warren, A. M., Sulaiman, A., & Jaafar, N. I. (2014). Facebook: The enabler of online civic engagement for activists. Computers in Human Behavior, 32, 284-289.
Watson, S., Wells, C. D., & Hudson, E. J. (2011). The Effects of Idealized Advertising Imagery on Social Comparisons, Psychological and Emotional Outcomes, and Consumer Vulnerability: A Conceptual Model. Journal of Promotion Management, 17(4), 407–417.
Westover, M. L., & Randle, Q. (2009). Endorser Weight and Perceptions of Brand Attitude and Intent to Purchase. Journal of Promotion Management, 15(1/2), 57-73.
Yang, B., Kim, Y., & Yoo, C. (2013). The integrated mobile advertising model: The effects of technology- and emotion-based evaluations. Journal of Business Research, 66(9), 1345-1352.
Yang, T. N. (2012). The decision behavior of Facebook users. Journal of Computer Information Systems, 52(3), 50–59.
Ye, C., Seo, D., & Desouza, K. C. (2008). Influences of IT Substitutes and User Experience on Post-Adoption User Switching: An Empirical Investigation. Journal of the American Society for Information Science and Technology, 59(13), 2115-2132.
Yi, M. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350–363.
Yoo, C. W., Sanders, G. L., & Moon, J. (2013). Exploring the effect of e-WOM participation on e-Loyalty in e-commerce. Decision Support Systems, 55(3), 669-678.
Yoo, Y., & Alavi, M. (2001). Media and group cohesion: Relative influences on social presence, task participation, and group consensus. MIS Quarterly, 25(3), 371–390.
YouTube, “Statistics.” Retrieved from http://www.youtube.com/yt/press/statistics.html
Zaichkowsky, J. L. (1985). Measuring the involvement construct. Journal of Consumer Research, 12(3), 341–352.
Zauberman, G. (2003). The Intertemporal Dynamics of Consumer Lock-In. Journal of Consumer Research, 30(3), 405-419.
Zauner, A., Koller, M., & Fink, M. (2012). Sponsoring, brand value and social media. RAE-Revista de Administracao de Empresas, 52(6), 681-691.
Zhang, K. Z. K., Lee, M. K. O., & Cheung, C. M. K. (2009). Understanding the role of gender in bloggers' switching behavior. Decision Support Systems, 47(4), 540-546.
Zhou, T. (2012). Understanding users' initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518–1525.
Zhou, T. (2014). Examining continuance usage of mobile Internet services from the perspective of resistance to change. Information development, 30(1), 22-31.
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540.
Zhu, K., Kraemer, K. L., Gurbaxani, V., & Xu, S. X. (2006). Migration to open-standard interorganizational systems: Network effects, switching costs, and path dependency. MIS Quarterly, 30, 515-539.
第一頁 上一頁 下一頁 最後一頁 top