跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/17 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張郁婷
研究生(外文):Yu-Ting Chang
論文名稱:社群媒體行銷使用者行為之研究
論文名稱(外文):Researches of User Behavior in Social Media Marketing
指導教授:盧希鵬盧希鵬引用關係游慧茹游慧茹引用關係
指導教授(外文):Hsi-Peng LuHueiju Yu
口試委員:盧希鵬游慧茹
口試委員(外文):Hsi-Peng LuHueiju Yu
口試日期:2015-01-08
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:93
中文關鍵詞:成本效益思辨可能模式使用者行為社群媒體行銷體驗創新
外文關鍵詞:cost benefit approachelaboration likelihood modeluser behaviorsocial media marketingexperience innovation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:851
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文從行銷行動計畫觀點,提出讓人知道、讓人喜歡、讓人交易的行銷策略,運用不同理論基礎和研究架構來驗證策略觀點,並透過Doblin的顧客體驗創新框架,歸納本文和未來研究的主題。研究成果將提供企業在投入行動商務與社群商務時,更精確有效的社群媒體行銷策略觀點,亦對後續學者提供未來的行銷研究方向與主題。
研究主題一「讓人知道的傳播策略」:掌握訊息說服力,引領消費者共同傳播。社群媒體行銷是深具影響力的行銷方式,按讚或分享影響了人氣凝聚和訊息擴散。本研究探討如何運用說服訊息(例如:論點品質、貼文熱門度、貼文吸引力),引領網友在社群媒體行銷活動中按讚和分享訊息。研究模型以思辨可能模式作為理論基礎,實證調查392位Facebook粉絲專區會員,運用結構方程模型進行問卷結果分析,結果顯示三種說服訊息是驅動網友按讚和分享訊息的重要因素。其中,貼文熱門度是必要的並且同時影響研究模式的中央與邊陲路徑。此外,不同的訊息特性及瀏覽族群,影響不同的傳播行為。
研究主題二「讓人喜歡的情感策略」:運用故事渲染力,改變消費者品牌態度。社群媒體廣泛傳播和即時分享訊息的特性,促使微電影的流行並成為品牌的說服工具。本研究運用情感反應、認知情感、情感移轉的說故事理論,以及思辨可能模式的說服理論,發展假設並檢定鑲嵌在微電影中說故事的力量與品牌態度的關聯,並探討認知涉入的調節變數對於整體效果的影響。研究中蒐集台灣YouTube的使用者資料,驗證認知情感和情感移轉對於品牌態度有正向關係,並討論認知涉入在調節的影響性。
研究主題三「讓人交易的參與策略」:透過媒體連結力,串聯消費者共同參與。行動社群網路服務的快速發展,使用者的線上參與以及轉換行為已成為極重要的議題,本研究結合成本效益和顧客體驗創新的理論基礎,分析420份有效問卷,發現不同型態的線上參與在不同的年齡族群,對於轉換成本和轉換效益的影響性是有差異的,轉換成本經由鎖定進而可影響群體轉換。
From the perspective of marketing action plan, this study provides three marketing strategies to enhance awareness, affections, and acquirement. The strategy perspectives will be verified by different theoretical basis and research architectures, and generalize the topic of marketing research through Doblin’s experience innovation framework. The expected contribution of this study is to provide social media marketing strategy insights for firms in undertaking mobile commerce and social commerce. The future direction for further research will also be addressed.
In the first study, the awareness of communication strategy grasps messages persuasiveness, leading consumers in common dissemination. Social media marketing is an influential marketing method. Liking or sharing social media messages can increase the effects of popular cohesion and message diffusion. This research investigates how persuasive messages (i.e. argument quality, post popularity, and post attractiveness) can lead internet users to click like and share messages in social media marketing activities. This research develops the hypotheses on the basis of elaboration likelihood model and a 392 fans survey from a fan page on Facebook. Structural equation modeling analyzes questionnaire data. Results show that the three types of persuasive messages are important to click like and to share post messages. Post popularity is essential and works through both central route and peripheral according to research model. In addition, different message characteristics and user groups have different communicating behaviors.
In the second study, the affections of emotion strategy changes consumer’s brand attitude in the use of storytelling rendering. Social media widely spread and instantly share messages. This feature accelerates the prevalence of using micro-film as a compelling tool for branding. Based on the storytelling theory of emotional responses, sympathy and empathy, and the persuasion theory of elaboration likelihood model, this study develops hypotheses to test the relationship between the storytelling power embedded in micro-films on brand attitude, and the moderating effect of cognitive involvement on the overall effect. The data collected from YouTube users in Taiwan has confirmed the positive relationship between sympathy and empathy on brand attitude, and the moderating effect of cognitive involvement. Implications are discussed.
In the third study, the acquirement of engagement strategy links consumer’s joint participation through media connecting. Mobile-social networking services have been developed rapidly recent years. Users’ online engagement and switching behavior have also become quite important issues. This research combined the basis of cost benefit approach and experience innovation. By analyzing 420 valid questionnaires, we found that different types of online-engagement in the different age groups, have differences in the impact of switching cost and switching benefit. Also, switching cost can thus affect group switching via lock-in.
摘要 I
ABSTRACT III
誌謝 V
TABLE OF CONTENT VII
LIST OF TABLES IX
LIST OF FIGURES X
1. INTRODUCTION 1
1.1 Background and motivation 1
1.2 Research questions and purposes 4
2. LITERATURE REVIEW 7
2.1 Online marketing evolution 7
2.2 Marketing strategy 9
2.3 ELM theory and Involvement 11
2.4 Cost benefit approach 13
2.5 Storytelling, Empathy and Sympathy 15
3. STUDY1:PERSUASIVE MESSAGES, POPULARITY COHESION, AND MESSAGE DIFFUSION IN SOCIAL MEDIA MARKETING 16
3.1 Introduction 16
3.2 Research Model 17
3.3 Data analysis and results 21
3.4 Discussion 30
4. STUDY2:HOW TO INFLUENCE THE BRAND ATTITUDE OF THE AUDIENCE BY MICRO-FILMS 33
4.1 Introduction 33
4.2 Research Model 35
4.3 Methodology 38
4.4 Data analysis and results 41
4.5 Discussion and Conclusion 44
5. STUDY3:ONLINE ENGAGEMENT AND SWITCHING BEHAVIOR IN MOBILE-SOCIAL NETWORKING SERVICES 47
5.1 Introduction 47
5.2 Research Model 50
5.3 Data analysis 53
5.4 Discussion 58
6. CONCLUSION 60
6.1 Theoretical implications 60
6.2 Managerial implications 60
6.3 Limitations 61
6.4 Future research 61
REFERENCE 64
APPENDIX 80
PUBLICATIONS 92
WORKING PAPER 93
Ahearne, M., Gruen, T. W., & Jarvis, C. B. (1999). If looks could sell: Moderation and mediation of the attractiveness effect on salesperson performance. International Journal of Research in Marketing, 16(4), 269–284.
Angst, C. M., & Agarwal, R. (2009). Adoption of electronic health records in the presence of privacy concerns: the elaboration likelihood model and individual persuasion. Mis Quarterly, 33(2), 339-370.
Arora, A., Forman, C., & Yoon, J. W. (2010). Complementarity and information technology adoption: Local area networks and the Internet. Information Economics and Policy, 22(3), 228-242.
Bagozzi, R. P., & Phillips, L. W. (1982). Representing and testing organizational theories: A holistic construal. Administrative Science Quarterly, 27(3), 459–489.
Bampo, M., Ewing, M. T., Mather, D. R., Stewart, D., & Wallace, M. (2008). The effects of the social structure of digital networks on viral marketing performance. Information Systems Research, 19(3), 273-290.
Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595–1600.
Berger, J. (2013). Contagious: Why Things Catch On. New York, MA: Simon & Schuster.
Berghout, E., Nijland, M., & Powell, P. (2011). Management of lifecycle costs and benefits: Lessons from information systems practice. Computers in Industry, 62(7), 755-764.
Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229–254.
Bhattacherjee, A., & Sanford, C. (2006). Influence processes for information technology acceptance: An elaboration likelihood model. MIS Quarterly, 30(4), 805–825.
Buil, I., de Chernatony, L., & Martinez, E. (2013). Examining the role of advertising and sales promotions in brand equity creation. Journal of Business Research, 66(1), 115-122.
Calder, B. J., Malthouse, E. C., & Schaedel, U. (2009). An Experimental Study of the Relationship between Online Engagement and Advertising Effectiveness. Journal of Interactive Marketing, 23(4), 321–331.
Camarero, C., & San Jose, R. (2011). Social and attitudinal determinants of viral marketing dynamics. Computers in Human Behavior, 27(6), 2292–2300.
Carmen, R.–S. M., Gonzalez-Fernandez, A. M., & Cervantes-Blanco, M. (2013). An analysis of the construct "involvement" in consumer behavior. Quality & Quantity, 47(2), 1105-1123.
Chakrabarty, S., & Yelkur, R. (2005). The Effects of Ad Irritation on Brand Attitudes. Journal of Promotion Management, 11(2/3), 37-48.
Cheng, X., & Liu, J. (2012). Exploring Interest Correlation for Peer-to-Peer Socialized Video Sharing. Acm Transactions on Multimedia Computing, Communications and Applications, 8(1), 5:1-5:20.
Cheung, C. M. K., & Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24–30.
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470.
Chiu, H.-C., Hsieh, Y.-C., & Kuo, Y.-C. (2012). How to Align your Brand Stories with Your Products. Journal of Retailing, 88(2), 262-275.
Chu, P., & Spires, E. (2003). Perceptions of accuracy and effort of decision strategies. Organizational Behavior and Human Decision Processes, 91(2), 203-214.
Costanzo, P. J., & Goodnight, J. E. (2005). Celebrity Endorsements: Matching Celebrity and Endorsed Brand in Magazine Avertisements. Journal of Promotion Management, 11(4), 49-62.
Coulter, K. S., & Punj, G. N. (2004). The effects of cognitive resource requirements, availability, and argument quality on brand attitudes—A melding of elaboration likelihood and cognitive resource matching theories. Journal of Advertising, 33(4), 53–64.
D'Alessandro, S., & Chitty, B. (2011). Real or Relevant Beauty? Body Shape and Endorser Effects on Brand Attitude and Body Image. Psychology & Marketing, 28(8), 843-878.
De Vriesa, L., Gensler, S., & Leeflang, P. S. H. (2012). Popularity of brand posts on brand fan pages: An investigation of the effects of social media marketing. Journal of Interactive Marketing, 26(2), 83–91.
Dentsu. SIPS. Available at: http://www.dentsu.co.jp/sips/index.html. (accessed January, 2011).
Di Blasio, P., & Milani, L. (2008). Computer-mediated communication and persuasion: Peripheral vs. central route to opinion shift. Computers in Human Behavior, 24(3), 798–815.
Doblin, “Ten Types of Innovation: The Discipline of Building Breakthroughs.” Retrieved from http://www.doblin.com/tentypes/
Escalas, J. E., & Stern, B. B. (2003). Sympathy and Empathy: Emotional Responses to Advertising Dramas. Journal of Consumer Research, 29(4), 566-578.
Escalas, J. E. (2004). Narrative Processing: Building Consumer Connections to Brands. Journal of Consumer Psychology, 14(1/2), 168-180.
Fog, K., Budtz, C., Munch, P., & Blanchette, S. (2010). Storytelling:Branding in Practice (2th ed.). Heidelberg, MA: Springer-Verlag.
Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Goncalves, H. M., & Sampaio, P. (2012). The customer satisfaction-customer loyalty relationship Reassessing customer and relational characteristics moderating effects. Management Decision, 50(9), 1509 - 1526.
Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276–286.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. London: Prentice Hall.
He, W., Qiao, Q., & Wei, K.-K. (2009). Social relationship and its role in knowledge management systems usage. Information & Management, 46(3), 175–180.
Hellmer, S. (2010). Switching costs, switching benefits and lock-in effects – the rergulated swedish heat market. Energy & Environment, 21(6), 563-575.
Hernandez, B., Montaner, T., Javier Sese, F., & Urquizu, P. (2011). The role of social motivations in e-learning: How do they affect usage and success of ICT interactive tools? Computers in Human Behavior, 27(6), 2224-2232.
Hinz, O., Skiera, B., Barrot, C., & Becker, J. U. (2011). Seeding strategies for viral marketing: An empirical comparison. Journal of Marketing, 75(6), 55–71.
Ho, J. Y. C., & Dempsey, M. (2010). Viral marketing: Motivations to forward online content. Journal of Business Research, 63(9–10), 1000–1006.
Hou, A. C. Y., Chern, C.-C., Chen, H.-G., & Chen, Y.-C. (2011). ‘Migrating to a new virtual world’: Exploring mmorpg switching through human migration theory. Computers in Human Behavior, 27(5), 1892–1903.
Hsu, C.-L., & Lin, J. C.-C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65–74.
Hsu, J. S.-C. (2014). Understanding the role of satisfaction in the formation of perceived switching value. Decision Support Systems, 59, 152-162.
Imlawi, J., & Gregg, D. (2014). Engagement in Online Social Networks: The Impact of Self-Disclosure and Humor. International Journal of Human-Computer Interaction, 30(2), 106-125.
International Data Corporation. Europe, Middle East and Africa Service Provider Opportunities on the 3rd Platform. Available at: http://www.idc.com/getdoc.jsp?containerId=IDC_P31385. (accessed 2014).
Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33, 692-724.
Kaplan, A. M., & Haenlein, M. (2011). Two hearts in three-quarter time: How to waltz the social media/viral marketing dance. Business Horizons, 54(3), 253-263.
Karnik, A., Saroop, A., & Borkar, V. (2013). On the diffusion of messages in on-line social networks. Performance Evaluation, 70(4), 271–285.
Kim, A. J. & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480-1486.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2009). Trust and Satisfaction, Two Stepping Stones for Successful E-Commerce Relationships: A Longitudinal Exploration. Information Systems Research, 20(2), 237-257.
Kim, G., Shin, B., & Lee, H. G. (2006). A study of factors that affect user intentions toward email service switching. Information & Management, 43(7), 884-893.
Kim, H., & Yoon, C. (2004). Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market. Telecommunications Policy, 28(9-10), 751-765.
Kim, H.-W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: a status quo bias perspective. MIS Quarterly, 33(3), 567-582.
Kim, J. U., Kim, W. J., & Park, S. C. (2010). Consumer perceptions on web advertisements and motivation factors to purchase in the online shopping. Computers in Human Behavior, 26(5), 1208–1222.
Kim, A. J., & Ko, E. (2012). Do social media marketing activities enhance customer equity? An empirical study of luxury fashion brand. Journal of Business Research, 65(10), 1480–1486.
Kim, S. S., & Son, J.-Y. (2009). Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the content of online services. MIS Quarterly, 33(1), 49–70.
Laroche, M., Habibi, M. R., Richard, M.-O., & Sankaranarayanan, R. (2012). The effects of social media based brand communities on brand community markers, value creation practices, brand trust and brand loyalty. Computers in Human Behavior, 28(5), 1755-1767.
Lee, A. Y., Keller, P. A., & Sternthal, B. (2010). Value from regulatory construal fit: The persuasive impact of fit between consumer goals and message concreteness. Journal of Consumer Research, 36(5), 735–747.
Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331–339.
Lee, D., Kim, H. S., & Kim, J. K. (2012). The role of self-construal in consumers' electronic word of mouth (eWOM) in social networking sites: A social cognitive approach. Computers in Human Behavior, 28(3), 1054-1062.
Lee, G., & Xia, W. (2011). A longitudinal experimental study on the interaction effects of persuasion quality, user training, and first-hand use on user perceptions of new information technology. Information & Management, 48(7), 288–295.
Lee, K. C., Chung, N., & Lee, S. (2011). Exploring the influence of personal schema on trust transfer and switching costs in brick-and-click bookstores. Information and Management, 48(8), 364-370.
Lee, M.-C. (2009). Understanding the behavioural intention to play online games An extension of the theory of planned behaviour. Online Information Review, 33(5), 849-872.
Lee, W.-K. (2012). An elaboration likelihood model based longitudinal analysis of attitude change during the process of IT acceptance via education program. Behaviour & Information Technology, 31(12), 1161-1171.
Li, H., Zhang, J., & Sarathy, R. (2010). Understanding compliance with internet use policy from the perspective of rational choice theory. Decision Support Systems, 48(4), 635-645.
Lu, J., Liu, C., Yu, C.-S., & Wang, K. (2008). Determinants of accepting wireless mobile data services in China. Information & Management, 45(1), 52–64.
McKinsey. A new way to measure word-of-mouth marketing. Available at: http://www.mckinsey.com/insights/marketing_sales/a_new_way_to_measure_word-of-mouth_marketing. (accessed April, 2010)
Mccracken, G. (1989). Who is the celebrity endorser? Cultural foundations of the endorsement process. Journal of Consumer Research, 16(3), 310-321.
McKee, R. (2003). Storytelling That Moves People. Harvard Business Review, 81(6), 51-55.
Mittins, M., Abratt, R., & Christie, P. (2011). Storytelling in reputation management: the case of Nashua Mobile South Africa. Management Decision, 49(3/4), 405-421.
Murray, K. B., & Haeubl, G. (2011). Freedom of choice, ease of use, and the formation of interface preferences. MIS Quarterly, 35(4), 955–976.
Murray, K. B., & Haubl, G. (2007). Explaining cognitive lock-in: The role of skill-based habits of use in consumer choice. Journal of Consumer Research, 34(1), 77-88.
Narayanan, M., Asur, S., Nair, A., Rao, S., Kaushik, A., Mehta, D., Athalye, S., Malhotra, A., Almeida, A., & Lalwani, R. (2012). Social Media and Business, Vikalpa: The Journal for Decision Makers, 37(4), 69-111.
Nowak, K. L. (2013). Choosing Buddy Icons that look like me or represent my personality: Using Buddy Icons for social presence. Computers in Human Behavior, 29(4), 1456-1464.
Pagani, M., & Mirabello, A. (2012). The Influence of Personal and Social-Interactive Engagement in Social TV Web Sites. International Journal of Electronic Commerce, 16(2), 41-67.
Papadatos, C. (2006). The art of storytelling: how loyalty marketers can build emotional connections to their brands. Journal of Consumer Marketing, 23(7), 382–384.
Park, C., & Lee, T. M. (2009). Information direction, website reputation and eWOM effect: A moderating role of product type. Journal of Business Research, 62(1), 61–67.
Park, D.-H., & Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399–410.
Park, D.-H., & Lee, J. (2008). eWOM overload and its effect on consumer behavioral intention depending on consumer involvement. Electronic Commerce Research and Applications, 7(4), 386-398.
Park, J.-H. (2014). The effects of personalization on user continuance in social networking sites. Information Processing & Management, 50(3), 462-475.
Park, S. C., & Ryoo, S. Y. (2013). An empirical investigation of end-users' switching toward cloud computing: A two factor theory perspective. Computers in Human Behavior, 29(1), 160-170.
Parra-Lopez, E., Buichand-Gidumal, J., Gutierrez-Tano, D, & Diaz-Armas, R. (2011). Intentions to use social media in organizing and taking vacation trips. Computers in Human Behavior, 27(2), 640-654.
Pellas, N. (2014). The influence of computer self-efficacy, metacognitive self-regulation and self-esteem on student engagement in online learning programs: Evidence from the virtual world of Second Life. Computers in Human Behavior, 35, 157-170.
Petty, R. E., & Cacioppo, J. T. (1986). Communication and persuasion: Central and peripheral routes to attitude change. New York, MA: Springer-Verlag.
Petty, R. E., Cacioppo, J. T., & Goldman, R. (1981). Personal Involvement as a Determinant of Argument-Based Persuasion. Journal of Personality and Social Psychology, 41(5), 847-855.
Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and Peripheral Routes to Advertising Effectiveness: The Moderating Role of Involvement. Journal of Consumer Research, 10(Sep), 135-146.
Polites, G. L., & Karahanna, E. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance. MIS Quarterly, 36(1), 21-42.
Rice, D. H., Kelting, K., & Lutz, R. J. (2012). Multiple endorsers and multiple endorsements: The influence of message repetition, source congruence and involvement on brand attitudes. Journal of Consumer Psychology, 22(2), 249-259.
Rogers, E.M. (1995). Diffusion of innovations. New York: Free Press.
Rossiter, J. R., & Percy, L. (1991). Emotions and motivations in advertising. Advances in Consumer Research, 18(1), 100–110.
Sell, S. (2012). Micro movies with major reach. Campaign Asia – Pacific, Hong Kong:United Kingdom, 68-68.
Sengupta, J., Goodstein, R. C., & Boninger, D. S. (1997). All cues are not created equal: Obtaining attitude persistence under low-involvement conditions. Journal of Consumer Research, 23(4), 351-361.
Shank, R.C., & Abelson, R.P. (1995). Knowledge and Memory: The Real Story. in R. S. Wyer, Jr. (ED). Knowledge and memory: The Real Story. Hillsdale, NJ:LawrenceErlbaum Associates, Inc.
Shin, D.-H., & Kim, W.-Y. (2008). Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability. Technological Forecasting and Social Change, 75(6), 854-874.
Sinclair, R. C., Moore, S. E., Mark, M. M., Soldat, A. S., & Lavis, C. A. (2010). Incidental moods, source likeability, and persuasion: Liking motivates message elaboration in happy people. Cognition and Emotion, 24(6), 940–961.
Small, D. A., & Verrochi, N. M. (2009). The Face of Need: Facial Emotion Expression on Charity Advertisements. Journal of Marketing Research, 46(6), 777-787.
Solomon, M. R. (2011). Consumer Behavior: buying, having, and being (10th ed.). New Jersey, MA: Prentice Hall.
Stern, B. B. (1994). Classical and Vignette Television Advertising Dramas: Structural Models, Formal Analysis, and Consumer Effects. Journal of Consumer Research, 20(4), 601-615.
Stokburger-Sauer, N., Ratneshwar, S., & Sen, S. (2012). Drivers of consumer-brand identification. International Journal of Research in Marketing, 29(4), 406-418.
Su, H.-J., Comer, L. B., & Lee, S. (2008). The Effect of Expertise on Consumers' Satisfaction with the Use of Interactive Recommendation Agents. Psychology & Marketing, 25(9), 859-880.
Sun, Y., Fang, Y., & Lim, K. H. (2014). Understanding knowledge contributors' satisfaction in transactional virtual communities: A cost-benefit trade-off perspective. Information & Management, 51(4), 441-450.
Tang, L., Jang, S., & Morrison, A. (2012). Dual-route communication of destination websites. Tourism Management, 33(1), 38-49.
Tsang, M.M., Ho, S.C., & Liang, T.P. (2004). Consumer attitudes toward mobile advertising: An empirical study. International Journal of Electronic Commerce, 8(3), 65-78.
Verhagen, T., Feldberg, F., van den Hooff, B., Meents, S., & Merikivi, J. (2012). Understanding users' motivations to engage in virtual worlds: A multipurpose model and empirical testing. Computers in Human Behavior, 28(2), 484–495.
Verhoeven, P. (2008). Who's in and who's out? Studying the effects of communication management on social cohesion. Journal of Communication Management, 12(2), 124-135.
Vijayasarathy, L., & Turk, D. (2012). Drivers of agile software development use: Dialectic interplay between benefits and hindrances. Information and Software Technology, 54(2), 137-148.
Wang, W.-T., & Li, H.-M. (2012). Factors influencing mobile services adoption: a brand-equity perspective. Internet Research, 22(2), 142-179.
Warren, A. M., Sulaiman, A., & Jaafar, N. I. (2014). Facebook: The enabler of online civic engagement for activists. Computers in Human Behavior, 32, 284-289.
Watson, S., Wells, C. D., & Hudson, E. J. (2011). The Effects of Idealized Advertising Imagery on Social Comparisons, Psychological and Emotional Outcomes, and Consumer Vulnerability: A Conceptual Model. Journal of Promotion Management, 17(4), 407–417.
Westover, M. L., & Randle, Q. (2009). Endorser Weight and Perceptions of Brand Attitude and Intent to Purchase. Journal of Promotion Management, 15(1/2), 57-73.
Yang, B., Kim, Y., & Yoo, C. (2013). The integrated mobile advertising model: The effects of technology- and emotion-based evaluations. Journal of Business Research, 66(9), 1345-1352.
Yang, T. N. (2012). The decision behavior of Facebook users. Journal of Computer Information Systems, 52(3), 50–59.
Ye, C., Seo, D., & Desouza, K. C. (2008). Influences of IT Substitutes and User Experience on Post-Adoption User Switching: An Empirical Investigation. Journal of the American Society for Information Science and Technology, 59(13), 2115-2132.
Yi, M. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350–363.
Yoo, C. W., Sanders, G. L., & Moon, J. (2013). Exploring the effect of e-WOM participation on e-Loyalty in e-commerce. Decision Support Systems, 55(3), 669-678.
Yoo, Y., & Alavi, M. (2001). Media and group cohesion: Relative influences on social presence, task participation, and group consensus. MIS Quarterly, 25(3), 371–390.
YouTube, “Statistics.” Retrieved from http://www.youtube.com/yt/press/statistics.html
Zaichkowsky, J. L. (1985). Measuring the involvement construct. Journal of Consumer Research, 12(3), 341–352.
Zauberman, G. (2003). The Intertemporal Dynamics of Consumer Lock-In. Journal of Consumer Research, 30(3), 405-419.
Zauner, A., Koller, M., & Fink, M. (2012). Sponsoring, brand value and social media. RAE-Revista de Administracao de Empresas, 52(6), 681-691.
Zhang, K. Z. K., Lee, M. K. O., & Cheung, C. M. K. (2009). Understanding the role of gender in bloggers' switching behavior. Decision Support Systems, 47(4), 540-546.
Zhou, T. (2012). Understanding users' initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518–1525.
Zhou, T. (2014). Examining continuance usage of mobile Internet services from the perspective of resistance to change. Information development, 30(1), 22-31.
Zhou, T. (2011). An empirical examination of initial trust in mobile banking. Internet Research, 21(5), 527-540.
Zhu, K., Kraemer, K. L., Gurbaxani, V., & Xu, S. X. (2006). Migration to open-standard interorganizational systems: Network effects, switching costs, and path dependency. MIS Quarterly, 30, 515-539.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top