跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秉賢
研究生(外文):Ping-Hsien Lin
論文名稱:一個偵測行動裝置即時通訊訊息的反詐騙系統-以臉書即時通為例
論文名稱(外文):A Fraud Detection System for Real-time Messaging Communication on Android Facebook Messenger
指導教授:羅乃維羅乃維引用關係
指導教授(外文):Nai-Wei Lo
口試委員:羅乃維
口試委員(外文):Nai-Wei Lo
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊管理系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:42
中文關鍵詞:詐騙偵測潛在語意模型餘弦相似度
外文關鍵詞:Fraud DetectionLatent Semantic AnalysisCosine Similarity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:405
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:1
隨著智慧型手機的普及化,各種行動應用裝置通訊應用程式(如:Facebook、Line、WeChat)的興起,不僅縮短了人與人溝通的距離,也節省了許多通訊的成本。但是在享受資訊科技所帶來便利的同時,許多風險也隨之產生,除了一些高風險的應用程式權限,導致我們的個人隱私資訊洩露之外,也被詐騙集團拿來當作詐騙的工具。近年來,許多詐騙事件都是詐騙集團透過行動應用裝置通訊應用程式來犯罪,利用聊天的方式掌握人性的弱點,進而騙取錢財。
在本篇論文中,我們設計出一個偵測行動裝置即時通訊訊息的反詐騙系統-以臉書即時通為例來解決上述的詐騙問題。本系統使用自然語言處理、矩陣處理、潛在語意分析與餘弦相似度來處理所輸入的資料,並且蒐集許多詐騙相關的新聞與案例,來驗證本系統偵測詐騙事件可行性,最後透過本系統搭配的行動裝置應用程式,達成警示使用者該聊天紀錄是否為詐騙事件的效果。
Recently, the popularity rate of the smartphone usage has rapidly risen. There is a variety of mobile applications which are developed, such as “Facebook”, “Line”, “WeChat”, etc. The applications not only make people communicate with each other more easily, but also help humans reduce extra fee of calling or sending short messages. However, when we enjoy the convenience of the smartphone, many potential risks will appear at the same time. For example, some of high risk permissions would let your personal privacy information be exposed. In Taiwan, fraudsters also use the applications as a fraud tool to complete their purpose of crime.
In this paper, we develop a fraud detection system of communications to solve the fraud problems. We use some technologies to process input data and verify feasibility of the fraud detection system, such as natural language processing, matrix processing, latent semantic analysis and cosine similarity. Then, we collect some news and cases about fraud event as training data for our fraud detection system and intercept the real-time message chat logs from “Facebook Messenger” as testing data. Finally, we develop a mobile application to warn the user whether the real-time message chat logs are fraud event or not.
中文摘要 I
Abstract II
誌謝 III
Contents IV
List of Figures V
List of Tables VI
Chapter 1 Introduction 1
Chapter 2 Preliminaries 5
2.1 Semantic Models 5
2.1.1 Latent Semantic Analysis 5
2.1.2 Probabilistic Latent Semantic Analysis 6
2.1.3 Latent Dirichlet Allocation 6
2.2 Decision Models 8
2.2.1 Cosine similarity 8
2.2.2 Jaccard Similarity 9
2.2.3 Dice Similarity 9
Chapter 3 The Proposed Fraud Detection System 10
3.1 System Architecture 10
3.2 Data Flow of the Fraud Detection System 10
3.3 Data Collection 11
3.4 Natural Language Processing 12
3.4.1 CKIP Word Segmentation 12
3.4.2 Stop Word 13
3.4.3 Special Symbol 13
3.5 Matrix Processing 13
3.5.1 Vector Space Model (VSM) 13
3.5.2 Term Frequency-Inverse Document Frequency Matrix 16
3.6 Latent Semantic Analysis 20
3.7 Classification Rules 28
Chapter 4 System Implementation, Testing Scenarios and Discussion 31
4.1 System Implementation 31
4.2 Testing Scenarios 33
4.3 Discussion 37
Chapter 5 Conclusion 38
References 39
[1]Y. Kou, C. T. Lu, S. Sirwongwattana and Y. P. Huang, “Survey of fraud detection techniques,” 2004 IEEE international conference on Networking, sensing and control, vol. 2, pp. 749-754, 2004.
[2]W. Lee and K. W. Mok, “Adaptive intrusion detection: a data mining approach,” Artificial Intelligence Review, vol. 14, no. 6, pp. 533-567, 2000.
[3]M. H. Cahill, D. Lambert, J. C. Pinheiro and D. X. Sun, “Detecting fraud in the real world,” Handbook of massive data sets, pp. 911-929, 2002.
[4]J. B. S. Freeman, A. Bivens and B. Szymanski, “Host-based intrusion detection using user signatures,” Graduate Research Conference, 2002.
[5]S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harsh-man, “Indexing by Latent Semantic Analysis,” American Society for Information Science, vol. 41, no. 6, pp 391-407, 1990b.
[6]C. D. Manning, P. Raghavan and H. Schütze, “Introduction to information retrieval,” Cambridge: Cambridge university press, 2008.
[7]G. Cosma and M. Joy, “An Approach to Source-Code Plagiarism Detection and Investigation Using Latent Semantic Analysis,” Institute of Electrical and Electronics Engineers Transactions on Computers, vol. 61, no. 3, pp. 379-394, 2012.
[8]N. Evangelopoulos, X. Zhang, and V. R. Prybutok, “Latent Semantic Analysis: Five Methodological Recommendations,” European Journal of Information Sys-tems, vol. 21, no. 1, pp. 70-86, 2010.
[9]T. K. Landauer, D. S. McNamara, S. Dennis and W. Kintsch, Handbook of Latent Semantic Analysis, Psychology Press, 2013.
[10]F.-F. Kuo, M.-K. Shan, and S.-Y. Lee, “Background Music Recommendation for Video Based on Multimodal Latent Semantic Analysis,” 2013 IEEE International Conference on Multimedia and Expo (ICME), pp. 1-6, 2013.
[11]R. Klein, A. Kyrilov and M. Tokman, “Automated Assessment of Short Free-Text Responses in Computer Science using Latent Semantic Analysis,” in Proceedings of the 16th annual joint conference on innovation and technology in computer science education, ACM, pp. 158-162, 2011.
[12]M. C. Lintean, C. Moldovan, V. Rus and D. S. McNamara, “The Role of Local and Global Weighting in Assessing the Semantic Similarity of Texts Using Latent Semantic Analysis,” FLAIRS Conference, pp. 235-240, 2010.
[13]M. G. Ozsoy, F. N. Alpaslan and I. Cicekli, “Text summarization using Latent Semantic Analysis,” Journal of Information Science, vol. 37, no. 4, pp. 405-417, 2011.
[14]C.-J. Luh, S.-A. Yang and D. T.-L. Huang, “Estimating Search Engine Ranking Function with Latent Semantic Analysis and a Genetic Algorithm,” in Proceed-ings of the 2012 3rd International Conference on E-Business and E-Government-Volume 04, IEEE Computer Society, pp. 439-442, 2012.
[15]P. Y. Hui and H. Y. Meng, “Latent Semantic Analysis for Multimodal User Input With Speech and Gestures,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 2, pp. 417-429, 2014.
[16]T. Hofmann, “Probabilistic latent semantic analysis,” in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, ACM, pp. 289-296, 1999.
[17]J. Zhang and S. Gong, “Action Categorization by Structural Probabilistic Latent Semantic Analysis,” Computer Vision and Image Understanding, vol. 114, no. 8, pp. 857-864, 2010.
[18]C. Shen, T. Li and C. H. Ding, “Integrating Clustering and Multi-Document Summarization by Bi-Mixture Probabilistic Latent Semantic Analysis (PLSA) with Sentence Bases,” Association for the Advancement of Artificial Intelligence, pp. 914-920, 2011.
[19]E. C. Su, J.-M. Chang, C.-W. Cheng, T.-Y. Sung, and W.-L. Hsu, “Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic la-tent semantic indexing,” BMC bioinformatics (13:S17-S13), pp. 1-10, 2012.
[20]Y. Wen, C. Zou and J. Liu, “Probabilistic latent semantic analysis for sketch-based 3D model retrieval," 2014 4th IEEE International Conference on Information Science and Technology (ICIST), pp. 594-597, 2014.
[21]D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent Dirichlet Allocation,” the Journal of machine Learning research, vol. 3, pp. 993-1022, 2003.
[22]A. Bhardwaj, M. Reddy, S. Setlur, V. Govindaraju and S. Ramachandrula, “Latent Dirichlet Allocation Based Writer Identification in Offline Handwriting,” in Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, ACM, pp. 357-362, 2010.
[23]J. C. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised learning of human action categories using spatial-temporal words,” International journal of computer vision, vol. 79, no. 3, pp. 299-318, 2008.
[24]J. Caol, J. Li, Y. Zhang and S. Tang, “LDA-Based Retrieval Framework for Semantic News Video Retrieval,” 2007 IEEE International Conference on Semantic Computing (ICSC), pp. 155-160, 2007.
[25]M. Juneja, A. Vedaldi, C. Jawahar and A. Zisserman, “Blocks that Shout: Distinctive Parts for Scene Classification,” 2013 IEEE Conference on Computer Vi-sion and Pattern Recognition (CVPR), pp. 924-930, 2013.
[26]T. Pang-Ning, M. Steinbach and V. Kumar, “Introduction to data mining,” Library of Congress, 2006.
[27]A. Singhal, “Modern information retrieval: A brief overview,” IEEE Data Eng. Bull, vol. 24, no. 4, pp. 35-43, 2001.
[28]V. Thada and D. V. Jaglan, “Comparison of Jaccard, Dice, Cosine Similarity Coefficient To Find Best Fitness Value for Web Retrieved Documents Using Genet-ic Algorithm,” International Journal of Innovations in Engineering and Technology, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 王顯智、黃美雪(2007)。心率變異度的發展與臨床應用。中華體育,21(3),1-9。
2. 尤嫣嫣(1999)。肥胖問題的探討。學校衛生,35,85-99。
3. 林順萍、黃國禎、陳俊忠、郭博昭(2006)。太極拳運動對心臟血管機能之影響。中華技術學院學報,34,389-397。
4. 林學宜、董至聖(2000)。登階訓練對心肺耐力、肌耐力及肌力影響之研究。宜蘭技術學報,5(12),131-134。
5. 侯堂盛、林晉榮(2006)。兒童與青少年肥胖對生活品質影響之探討。嘉大體育健康休閒期刊,5,10-18
6. 郭正典、陳高揚(1997)。心率變異度及心肺功能失常。臨床醫學,39(5),271-274。
7. 陳天香(1994)。階梯有氧運動對大一男女生生理功能的影響。臺大體育,24,5-24。
8. 陳天香(1994)。階梯有氧運動對大學一年級及三、四年級學生體適能影響的差異。臺大體育,25,7-18。
9. 陳全壽(1995)。二十一世紀的身體運動及運動科學研究。國民體育季刊,24(4),4-12。
10. 陳高揚、郭正典、駱惠銘(2000)。心率變異度:原理與應用。中華民國急救加護醫學會雜誌,11(2),47-58。
11. 陳高揚、郭正典(2001)。佛教師子王臥對冠狀動脈疾病患者及孕婦自律神經活性的效應。佛學與科學,2(1),7-20。
12. 黃永任(1998)。運動、體適能與疾病預防。國民體育季刊,27(2),5-13。
13. 黃苹苹、王顯智(2005)。心率變異度在運動上之應用。大專體育,77,63-69。
14. 黃新作(1993)。運動中心臟自律神經功能之變化.以心電圖R-R波間隔變動強度光譜解析法來探討。國立體育學院論叢,4(1),123-138。
15. 張美莉(1995)。10與14週階梯有氧舞蹈及高衝擊有氧舞蹈學習課程對一般大學女生健康體適能影響的探討。大專體育,23,120-131。