(54.236.58.220) 您好!臺灣時間:2021/02/27 18:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾子豪
研究生(外文):Tzu-hao Tseng
論文名稱:使用串接互補式與z域技術設計寬頻色散式群延遲線
論文名稱(外文):Broadband Dispersive Group Delay Line Using Cascaded Complementary Configuration and z Domain Techniques
指導教授:徐敬文
指導教授(外文):Ching-Wen Hsue
口試委員:徐敬文
口試委員(外文):Ching-Wen Hsue
口試日期:2014-10-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:53
中文關鍵詞:群延遲線
外文關鍵詞:Group delay line
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個利用串接互補式傳輸線結構(complementary transmission-line structure)實現一個寬頻色散式群延遲線,且其|S21|為全通響應。互補式結構主要為訊號層之並聯開路殘段與其相同結構之接地層槽線所構成,其接地層槽線可補償訊號層並聯殘段所產生之零點以使訊號層並聯殘段之|S21|頻率響應由帶拒響應變成全通響應。再者,為了避免高階諧波頻率影響操作頻帶,z域技術亦被引入以提高並聯殘段之諧波頻率與中心頻率之比值,並藉由其所推導的公式設計合適阻抗以控制群延遲之頻寬。多級串接技術亦被運用以增加其群延遲時間與頻寬。
In this thesis, a broadband dispersive group delay line with |S21| of all-pass response using cascaded complementary-transmission-line structure is presented. The complementary structure includes mainly shunted open stubs in signal plane and slot-line of the corresponding stubs in ground plane. Transmission zeros of shunted open stubs can be convert to a all-pass response of |S21| by the slot-line of corresponding stubs. In addition, in order to avoid higher order harmonics affect performance in fundamental band, z domain technique is employed to enhance the ratio of higher order harmonic frequencies and central frequency for the shunted open stubs. The formulations for controlling bandwidth of group delay is also derived by z domain technique. Multi-stage cascaded technique is employed to increase the time and bandwidth of group delay.
論文摘要 I
Abstract II
誌謝 IV
Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Proposal 2
1.3 Organization of Chapters 3
Chapter 2 Basic Theory 4
2.1 Microstrip lines 5
2.2 Chain-scattering parameters 7
2.3 An open-circuited one-section stub 13
2.3.3 Fundamental circuits and their chain-scattering parameters 9
2.3.1 A serial transmission line section 10
2.3.2 A short-circuited two-section stub 15
2.3.4 An open-circuited two-section stub 16
2.4 Equal length two-section stub in the z domain 19
2.5 Parallel equal-length two-section stubs in the z domain 22
Chapter 3 Implementation and Experimental Results 24
3.1 The design-flow diagram of a broadband dispersive group delay line 26
3.2 A Broadband Dispersive Group Delay Line 28
3.3 Simulated and measured results 43
3.4 Discussion 46
Chapter 4 Conclusion 48
4.1 Conclusion 48
4.2 Future Work 49
References 50
[1]V. P. Meschanov, I. V. Metelnikova, V. D. Tupikin, and G. G. Chumaevskaya, “A new structure of microwave ultrawide-band differential phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 5, pp.762–765, May 1994.
[2]V. Ssorin, A. Artemenko, A. Sevastyanov, and R. Maslennikov, “Compact bandwidth-optimized two element MIMO antenna system for 2..5-2.7 GHz band”, Proceeding of the 5th European Conference on Antennas and Propagation (EuCAP 2011), Rome, Italy, 11-15 Apr., 2011, p.319-323.
[3]H. Gandhi, “A Flexible Volterra-Based Adaptive Digital Pre-Distortion Solution for Wideband RF Power Amplifier Linearization”, Microwaves and RF, Aug/Sep. 2008.
[4]M. Allen, J. Marttila and M. Valkama, “'Digital post-processing for reducing A/D converter nonlinear distortion in wideband radio receivers,” in Proc. Asilomar Conf. Signals, Syst., Computers, Pacific Grove, CA, USA, Nov. 2009.
[5]S. Gupta, A. Parsa, E. Perret, R. V. Snyder, R. J.Wenzel, and C. Caloz, “Group delay engineered non-commensurate transmission line all-pass network for analog signal processing,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2392–2407, Aug. 2010.
[6]S. Gupta, D. L. Sounas, H. V. Nguyen, Q. Zhang, and C. Caloz, “ CRLH-CRLH C-section dispersive delay structures with enhanced group delay swing for higher analog signal processing resolution, ” IEEE Trans. Microw. Theory Tech., vol. 60, no. 21, pp. 3939–3949, Dec. 2012.
[7]B. Nikfal, S. Gupta, and C. Caloz, “Increased group delay slope loop system for enhanced-resolution analog signal processing, ” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1622–1628, Jun. 2011.
[8]M. K. Mandal, D. Deslandes, and K. Wu, ”Complementary microstrip-slot stub configuration for group delay engineering, ”IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 388-390, Aug. 2012.
[9]S. Gupta, A. Parsa, E. Perret, , R. V. Snyder, Robert J. Wenzel, and Christophe Caloz, “Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing, ”IEEE Trans. Microw. Theory Tech., vol.58, no. 9, pp. 2392-2407, Sep. 2010.
[10]J. D. Schwartz, I. Arnedo, M. A. G. Laso, T. Lopetegi, J. Azana, and D. Plant,“An electronic UWB continuously tunable time-delay system with nanosecond delays,” IEEE Microw. Wireless Compon. Lett., vol.18, no. 2, pp. 103–105, Feb. 2008.
[11]R. Li and L. Zhu, “Ultra-wideband microstrip-slotline bandpass filter with enhanced rejection skirts and widened upper stopband,” Electronic Lett., vol. 43,no. 24, pp. 1368-1369, Nov. 2007.
[12]C.-W. Hsue, C.-W. Ling and W.-T Huang, “Discrete-time notch filter and its application to microwave filter,” Microw. Optical Technol. Lett., vol. 50, no. 6,pp. 1596-1600, Jun. 2008.
[13]B. Xiang, A. Kopa, Z. Fu, and A. Apsel, “Theoretical analysis and practical consideration for the Integrated time-stretching system using dispersive delay line (DDL),” IEEE Trans. Microw. Theory Tech, vol. 60, no. 11, pp. 3449-3457, Nov. 2012.
[14]C.-T. M. Wu, S. Gharavi, B. Daneshrad, and T. Itoh, “A dual-purpose reconfigurable negative group delay circuit based on distributed amplifiers, ”IEEE Microw. Wireless Compon. Lett., vol. 23, no. 11, pp. 593-595, Nov. 2013.
[15]S. Gupta, and C. Caloz,” Analog signal processing in transmission line metamaterial structure,“RADIOENGINEERING, vol. 18, no. 2, pp. 155-167, Jun. 2009.
[16]H. Kwon, H. Lim, and B. Kang, “Design of 6-18 GHz wideband phase shifters using radial stubs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 205–207, Mar. 2007.
[17]Y.-S. Dai, D.-G. Fang, and Y.-X. Guo, “A novel miniature 122 GHz 90 MMIC phase shifter with microstrip radial stubs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 109–111, Feb. 2008.
[18]G. Boyacioglu and S. Demir, “Wideband phase shifter design using Lange coupler and radial stubs,” in Mediterranean Microw. Symp., Aug. 2010, pp. 36–39.
[19]Robert E. Collin, “Foundations for Microwave Engineering”, IEEE Press Series on Electromagnetic Wave Theory, 2000.
[20]D. C. Chang and C. W. Hsue, “ Design and Implementation of Filters Using Transfer Functions in the z Domain,” IEEE Trans. Microwave Theory Tech., vol. 49, No.5, pp. 979 – 985 2001.
[21]D. M. Pozar, “Microwave Engineering”, 3rd Ed.,John Wiley & Sons Inc,p.p.183-187, 2005
[22]I. J Bahl and D. K. Trivedi, “A Designer’s Guide to Microstrip Line,” Microwave 1977.
[23]C.-W. Hsue, C.-W. Ling, and W.-T. Hung, “Discrete-time notch filter and its application to microwave filter,” Microwave and Optical Tech. Lett., Vl. 50, vol.6, pp. 1596-1600, 2008.
[24]L.-C. Tsai and C.-W. Hsue, “ Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform Technique, ” IEEE Trans. Microw. Theory Tech., vol. 52, No.4, pp. 1111 – 1117 2004.
[25]A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-hall,1989.
[26]C. Quendo, E. Rius and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microwave Theory Tech., vol.51, no. 3, pp.734-743,Mar. 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔