跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/25 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林紹宇
研究生(外文):Shao-Yu Lin
論文名稱:有機光電能量轉換元件:探討電流增益之操作機制
論文名稱(外文):Organic Up-conversion Devices: Investigation of the Operation Mechanism of Current Gain Ratio
指導教授:李志堅李志堅引用關係
指導教授(外文):Chih-Chien Lee
口試委員:李志堅
口試委員(外文):Chih-Chien Lee
口試日期:2015-07-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:126
中文關鍵詞:有機光電元件有機上轉換元件近紅外光成像光偵測器
外文關鍵詞:organic optical electronic deviceup-conversion devicenear-infrared imageoptical sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文構想為使用全有機(Organic)材料系統製作半導體元件,結合有機太陽能電池(Organic photovoltaic, OPV)以及有機電激發光二極體(Organic light emitting diode, OLED)之特性製作薄膜型式之光轉換元件,其主要功能為吸收紅外光(長波長)影像,經由元件內部光→電→光的轉換,向外輸出綠色可見光(短波長)影像。因應吸收波段的需要,本篇論文採用氯鋁酞菁(Chloroaluminum phthalocyanine, ClAlPc)混合碳七十(C70)作為有機上轉換元件之感光單元,並以Ir(ppy)3綠色磷光OLED系統作為放光單元。
首先以標準OPV元件驗證此新型光吸收層對於近紅外光(Near-infrared, NIR)具備良好的光電響應及優秀的載子拆解能力;而後藉由元件結構設計,實現光吸收層可分別應用於上轉換元件之電洞供應及電子供應端,透過元件光電特性量測得最高上轉換效率為6.3%(W/W),並採用最佳結構製作穿透式元件於夜視環境作紅外線成像之測試,所得最高影像解析度超過600 dpi,證明使用ClAlPc:C70此新型光吸收層之上轉換元件不僅具有高效率的光轉換能力,更具備高解析度的成像品質。
最終藉由電洞供應及電子供應元件之結構原理分析與光電特性數據,論證其暗電流主因來自於多數載子之反向貢獻,並藉由優化多數載子侷限介面與增加客發光體分子形成之載子陷阱態,達成電流增益接近90,000倍、最高上轉換效率6.1%(W/W)之高效能有機上轉換元件。
This thesis have demonstrated an all-organic thin-film optical up-conversion device by connecting organic photovoltaic (OPV) device and organic light-emitting diode (OLED) in series. The basis working principle of the up-conversion device is to absorb near-infrared (NIR) light and emits visible light that depends on materials used in OLED. The realistic functionality is to transform invisible light into visible image, such as night-vision or vein-eye applications. Because of the requirement of an OPV device with NIR-absorbing property, we used chloroaluminum phthalocyanine (ClAlPc) as a donor and C70 as an acceptor to fabricate the optical-sensing component, charge-generation layer (CGL). An OLED with a green light output is fabricated using Ir(ppy)3 phosphorescent material.
At first, the optimization of ClAlPc:C70-based OPV device exhibits a high external quantum efficiency in the NIR wavelength range, thus showing the potential of absorbing NIR light for generating charges that OLED requires. In addition, by carefully designing the device structure, the CGL can generate both holes and electrons and inject them into OLED for recombining electrons and holes originated from the electrode, respectively. The optimal upconversion efficiency of 6.3% in W/W is achieved. The transparent thin-film up-conversion device is successfully used in night-vision application and exhibits a high image resolution exceeding 600 dpi, demonstrating that the up-conversion device based on ClAlPc:C70 CGL can not only efficiently convert photons to charges but also having a high image quality.
Because of the ambipolar property of the CGL, we find that the dark current is primarily originated from the majority charge. The reduction in dark current can be realized by confining the majority charges at the interface and increase the dopant concentration in OLED, thus the current gain of over 90,000 and upconversion efficiency exceeding 6.1% in W/W are achieved.
致謝 i
中文摘要 iii
Abstract v
總目錄 vii
圖目錄 xi
表目錄 xv
Chapter 1 緒論 1
1.1 引言 1
1.2 上轉換元件開發背景與研究文獻回顧 4
1.2.1 無機系統 5
1.2.2 混合系統 7
1.2.3 有機系統 19
1.2.4 文獻整理 30
1.3 有機上轉換元件之發展 33
Chapter 2 理論基礎 40
2.1 有機半導體傳輸機制 40
2.2 有機發光二極體工作原理 44
2.3 有機太陽能電池工作原理 49
2.4 量測單位與指標定義 53
2.4.1 OLED量測單位定義 53
2.4.2 OPV量測單位定義 56
2.4.3 Up-conversion device量測單位定義 57
Chapter 3 實驗流程與設備 61
3.1 實驗材料 61
3.1.1 基板 61
3.1.2 藥品 61
3.2 實驗設備 62
3.2.1 超音波清洗機(Ultrasonic cleaner) 62
3.2.2 加熱板(Hot Plate) 62
3.2.3 紫外光曝光機(UV exposure) 63
3.2.4 旋轉塗佈機(Spin coater) 63
3.2.5 氧電漿清潔機(O2 plasma) 64
3.2.6 真空熱蒸鍍系統(Thermal Evaporator) 65
3.2.7 手套箱系統(Glove box) 66
3.2.8 膜厚量測系統(α-Step) 67
3.2.9 輝度計 67
3.2.10 太陽光模擬器 67
3.2.11 外部量子效率量測系統 68
3.2.12 光電子光譜儀(AC-2) 69
3.2.13 UV光譜儀 69
3.2.14 原子力顯微鏡(AFM) 70
3.2.15 NIR LED 71
3.2.16 聚焦物鏡 71
3.2.17 元件表面影像紀錄 71
3.2.18 光學顯微鏡 72
3.3 實驗流程 72
3.3.1 黃光微影製程 72
3.3.2 基板前清洗及處理 75
3.3.3 真空熱蒸鍍製程 76
3.3.4 元件封裝 76
Chapter 4 研究成果與討論 77
4.1 感光單元材料選擇與最佳化 78
4.2 感光單元應用於電洞供應端測試 81
4.2.1 電洞供應元件光電特性 82
4.2.2 電洞供應元件應用於紅外光成像 86
4.2.3 電洞供應元件於粉霧環境成像測試 89
4.3 感光單元應用於電子供應端測試 91
4.3.1 EIL薄膜穿透度分析 93
4.3.2 電子供應元件光電特性 94
4.3.3 EIL能障分析 97
4.3.4 電子供應元件應用於紅外線成像 101
4.4 上轉換元件暗電流成因探討 103
4.5 暗電流抑制測試 108
4.5.1 標準OLED調變客發光體濃度 108
4.5.2 上轉換元件調變客發光體濃度 111
4.5.3 優化多數載子侷限介面 114
Chapter 5 結論 118
參考文獻 122
[1]“http://thedroidguy.com.”
[2]“http://exposolar.org/.”
[3]B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia, 2, 26 (2000).
[4]J. Tao, J. Chen, D. Ban, M. G. Helander and Z. H. Lu, “Optical up-conversion devices for infrared detection and imaging,” Sci. Adv. Mater., 4, 266 (2012).
[5]X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol., 22, 969 (2004).
[6]K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice,” Nat. Nanotechnol., 4, 773 (2009).
[7]R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G. Lovhoiden and C. Vrancken, “Vein imaging: a New method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment,” Dermatol. Surg., 32, 1031 (2006).
[8]J. S. Sandhu, A. P. Heberle, B. W. Alphenaar and J. R. A. Cleaver, “Near-infrared to visible up-conversion in a forward-biased Schottky diode with a p-doped channel,” Appl. Phys. Lett., 76, 1507 (2000).
[9]K. J. Russell, I. Appelbaum, H. Temkin, C. H. Perry, V. Narayanamurti, M. P. Hanson and A. C. Gossard, “Room-temperature electro-optic up-conversion via internal photoemission,” Appl. Phys. Lett., 82, 2960 (2003).
[10]D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. SpringThorpe, R. Glew and M. Buchanan, “Optimized GaAs∕AlGaAs light-emitting diodes and high efficiency wafer-fused optical up-conversion devices,” J. Appl. Phys., 96, 5243 (2004).
[11]H. Luo, D. Ban, H. C. Liu, P. J. Poole and M. Buchanan, “Pixelless imaging device using optical up-converter,” IEEE Electron Device Lett., 25, 129 (2004).
[12]D. Ban, S. Han, Z. H. Lu, T. Oogarah, A. J. SpringThorpe and H. C. Liu, “Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector,” Appl. Phys. Lett., 90, 093108 (2007).
[13]J. Chen, D. Ban, X. Feng, Z. Lu, S. Fathololoumi, A. J. SpringThorpe and H. Liu, “Enhanced efficiency in near-infrared inorganic/organic hybrid optical upconverter with an embedded mirror,” J. Appl. Phys., 103, 103112 (2008).
[14]J. Chen, D. Ban, M. G. Helander, Z. H. Lu and P. Poole, “Near‐infrared inorganic/organic optical upconverter with an external power efficiency of> 100%,” Adv. Mater., 22, 4900 (2010).
[15]X. Chu, M. Guan, L. Li, Y. Zhang, F. Zhang, Y. Li, Z. Zhu, B. Wang and Y. Zeng, “Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization,” ACS Appl. Mater. Interfaces, 4, 4976 (2012).
[16]J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu and Z. Lu, “Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging,” Adv. Mater., 24, 3138 (2012).
[17]J. Ni, T. Tano, Y. Ichino, T. Hanada, T. Kamata, N. Takada and K. Yase, “Organic light-emitting diode with TiOPc layer–a new multifunctional optoelectronic device,” Jpn. J. Appl. Phys., 40, L948 (2001).
[18]M. Chikamatsu, Y. Ichino, N. Takada, M. Yoshida, T. Kamata and K. Yase, “Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device,” Appl. Phys. Lett., 81, 769 (2002).
[19]D. Y. Kim, D. W. Song, N. Chopra, P. De Somer and F. So, “Organic infrared upconversion device,” Adv. Mater., 22, 2260 (2010).
[20]D. Y. Kim, T. H. Lai, J. W. Lee, J. R. Manders and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep., 4, 5946 (2014).
[21]D. Y. Kim, K. R. Choudhury, J. W. Lee, D. W. Song, G. Sarasqueta and F. So, “PbSe nanocrystal-based infrared-to-visible up-conversion device,” Nano Lett., 11, 2109 (2011).
[22]Y. Okawa, S. Naka and H. Okada, “Enhancement of electron injection in organic light-emitting diodes with photosensitive charge generation layer,” Jpn. J. Appl. Phys., 50, 01BC11 (2011).
[23]M. Guan, L. Li, G. Cao, Y. Zhang, B. Wang, X. Chu, Z. Zhu and Y. Zeng, “Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion,” Org. Electron., 12, 2090 (2011).
[24]X. Chu, M. Guan, L. Niu, Y. Zeng, Y. Li, Y. Zhang, Z. Zhu and B. Wang, “Fast responsive and highly efficient optical upconverter based on phosphorescent OLED,” ACS Appl. Mater. Interfaces, 6, 19011 (2014).
[25]W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys, 43, 5033 (1972).
[26]R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models,” J. Chem. Phys., 44, 3797 (1966).
[27]M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys, 38, 2042 (1963).
[28]C. W. Tang and S. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
[29]C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, “Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence,” Thin Solid Films, 363, 327 (2000).
[30]M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, 395, 151 (1998).
[31]N. S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science, 315, 798 (2007).
[32]C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sol. Energy Mater. Sol. Cells, 91, 379 (2007).
[33]S. B. Rim, R. F. Fink, J. C. Schoneboom, P. Erk and P. Peumans, “Effect of molecular packing on the exciton diffusion length in organic solar cells,” Appl. Phys. Lett., 91, 173504 (2007).
[34]B. Leckner, “The spectral distribution of solar radiation at the earth's surface--elements of a model,” Solar Energy, 20, 143 (1978).
[35]P. Peumans, S. Uchida and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature, 425, 158 (2003).
[36]P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” Adv. Mater., 19, 1551 (2007).
[37]H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley and J. R. Durrant, “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy,” J. Am. Chem. Soc., 130, 3030 (2008).
[38]J. L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges,” Acc. Chem. Res., 42, 1691 (2009).
[39]A. Jannat, M. F. Rahman and M. S. H. khan, “A Review Study of Organic Photovoltaic Cell ” International Journal of Scientific & Engineering Research, 4, 1 (2013).
[40]P. Peumans, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., 93, 3693 (2003).
[41]I.-H. Hong, M.-W. Lee, Y.-M. Koo, H. Jeong, T.-S. Kim and O.-K. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett., 87, 063502 (2005).
[42]S. H. Kim, J. Jang and J. Y. Lee, “Relationship between indium tin oxide surface treatment and hole injection in C60 modified devices,” Appl. Phys. Lett., 89, 253501 (2006).
[43]M. Michio, J. Yukitoshi, A. Tomonori and K. Takashi, “Analysis of Current-Voltage Characteristics of Organic Electroluminescent Devices on the Basis of Schottky Emission Mechanism,” Jpn. J. Appl. Phys., 35, 5735 (1996).
[44]K. Harada, T. Edura and C. Adachi, “Nanocrystal growth and improved performance of small molecule bulk heterojunction solar cells composed of a blend of chloroaluminum phthalocyanine and C70,” Appl. Phys. Express, 3, 121602 (2010).
[45]B. Verreet, R. Müller, B. P. Rand, K. Vasseur and P. Heremans, “Structural templating of chloro-aluminum phthalocyanine layers for planar and bulk heterojunction organic solar cells,” Org. Electron., 12, 2131 (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top