|
[1]B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998 [2]N. M.Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992. [3]B. Razavi, “Design of Analog CMOS Integrated Circuit”,Mc Graw Hill,2008. [4]J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003. [5]B. Razavi , Design of Integrated Circuits for Optical Communications”, Mc Graw Hill. [6]B. Razavi, “Design of Analog CMOS Integrated Circuits”, Mc Graw Hill, 2001. [7]J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking,” IEEE International Symposium on Circuit and System (ISCAS), vol. 2, pp. 533-536, May 2000. [8]J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000. [9]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000. [10]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966. [11]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998. [12]T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000. [13]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998. [14]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974. [15]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000. [16]A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001. [17]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000. [18]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996. [19]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996. [20]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004. [21]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999. [22]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002. [23]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000. [24]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001. [25]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001. [26]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002. [27]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002. [28]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003. [29]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973. [30]I. Kwon and K. Lee, “An integrated low power highly linear 2.4 GHz CMOS receiver front-end based on current amplification and mixing,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 1,pp. 36-38, Jan. 2005. [31]A. Zolfaghari and B. Razavi, “A low-power 2.4 GHz transmitter/receiver CMOS IC,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 176-183, Feb. 2003. [32]S.-L. Jang, C. C. Liu and C.-Wei Chung, ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009. [33] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004. [34]K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range” ESSCC, pp. 135-138, Aug., 2004. [35]S.-L. Jang, C.-C. Liu, Y.-H. Liao, and R.-K. Yang, “A wide locking range divide-by-2 LC-tank injection locked frequency divider,” IEEE VLSI-DAT., 2010. pp.87-90. [36]S. L. Jang, S. H. Huang, C. F. Lee, and M. H. Juang, “ LC-tank Colpitts injection-locked frequency divider with record locking range”, IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 560-562, 2008. [37]N. Hajamini and M. Yavari, “A ring-type ILFD with locking range of 91% for divide-by-4 and 40% for divide-by-8 with quadrature outputs,” Iranian Conf. Electrical Eng. (ICEE), Iran, May 2013 [38]T. Ohira, ” Extended Adler's injection locked Q factor formula for general one- and two-port active device oscillators,” IEICE Electronics Express, Vol. 7, No.19, 1486–1492. 2010. [39]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004. [40]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.. [41]S.-L. Jang, L.-y. Tsai and C.-F. Lee, ” A CMOS switched resonator frequency divider tuned by the switch gate bias ,” Microw. Opt. Technol. Lett.,Vol. 50, no. 1, pp.222-225, Jan. 2008. [42]S.-L. Jang, R.-K. Yang, C.-W. Chang and M.-H. Juang, ” Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311-313, May, 2009. [43]J.-C. Chien and L.-H. Lu, “40 GHz wide-locking range regenerative frequency divider and low-phase-noise balanced VCO in 0.18 um CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 544–545. [44]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J. F. Huang" Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., accepted 2014.. [45]S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circuit Theory and Applications .,2015. [46]S.-L. Jang, C.-C. Liu and C.-W. Tai, ” Implementation of 6-port 3D transformer in injection-locked frequency divider,” IEEE Int. VLSI- DAT, pp. 223-226, 2009. [47]Y.-T. Chen, M.-W. Li, T.-H. Huang, and H.-R. Chuang, “A V-band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 396-398, July. 2010.. [48]Sheng-Lyang Jang, Yu–Tai Chang, Ching-Wen Hsue and Miin-Horng Juang.“Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region” International Journal of Circuit Theory and Applications 7 JUL 2015 DOI: 10.1002/cta.2116 [49]S.-L. Jang and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,” Electronics Lett. .,vol. 50, 23, pp.1710-1712, 2014.
|