(3.239.33.139) 您好!臺灣時間:2021/03/07 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐嵩閔
研究生(外文):Sung-Min Hsu
論文名稱:探討鎖定式骨板於股骨遠端骨折治療之穩定度分析:有限元素分析與實驗驗證
論文名稱(外文):Biomechanical Investigation of Locking Compression Plate for the Treatment of Distal Femoral Fractures Using Finite Element Analyses and Mechanical Tests
指導教授:趙振綱徐慶琪
指導教授(外文):Ching-Kong ChaoChing-Chi Hsu
口試委員:趙振綱徐慶琪
口試委員(外文):Ching-Kong ChaoChing-Chi Hsu
口試日期:2014-12-16
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:股骨遠端骨折鎖定式骨板螺絲位置及數量有限元素
外文關鍵詞:Femoral fractureLocking plateFinite element analyses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
強烈的撞擊和骨質疏鬆症是造成股骨骨折的主要原因,穩定度關係著手術的成敗,鎖定式骨板已經被廣泛應用於治療各種骨折,微創手術的發明減少臨床併發症的風險。骨板具有很多個螺絲孔允許醫師植入螺絲,螺絲的位置及數量關係著穩定度,所以兩者變得至關重要。然而,鎖定式骨板不同的螺絲位置及數量,治療股骨遠端骨折之生物力學結果,在過去尚未被宏觀地評估和討論。因此,本研究的目的是藉由腰椎後三節、骨盆、股骨的有限元素模型,分析不同骨折位置、螺絲位置及數量下固定系統的生物力學特性。
本研究的腰椎後三節、骨盆及股骨有限元素模型使用斷層掃描建立,包括有椎體(硬質骨、鬆質骨)、後方元件、椎間盤、關節軟組織、骨盆、股骨。鎖定式骨板及骨螺絲有限元素模型使用Solidworks建立。模型建立完成後,再匯進ANSYS 14.5有限元素分析軟體,針對兩種模型,其中包含腰椎-骨盆-股骨模型、單純考慮股骨模型;三種不同骨折位置;八種螺絲數量及六種螺絲位置,進行有限元素分析。評估螺絲數量及位置在不同股骨遠端骨折的生物力學特性,是以位移量及骨板表面應力的結果呈現。並且使用INSTRON-8872疲勞測試系統進行生物力學實驗,對六種不同螺絲數量進行壓力測試,並且擷取實驗過程的力-位移曲線,結果是以力-位移曲線的斜率(剛性)來呈現。最後,比較生物力學實驗跟限元素分析的結果。
在不同骨折位置、螺絲數量及位置,分析跟實驗結果顯示,螺絲數量的減少會增加位移量及減少剛性,而分析的結果如下,工作長度較短的螺絲打法能使位移量降低,提供較好的穩固效果;骨折發生在越靠近膝關節的骨折越不穩定,需要用更多的螺絲來做治療;位移量較大的螺絲打法也會使骨板有較高的應力。
High-energy impact and osteoporosis are the main causes of femoral fractures. Fixation stability can make a difference between success and failure in surgical operations. Locking-plate system has been widely used in the treatment of a big variety of bone fractures. The chance of occurring complications has been significantly reduced thanks to the invention of the Less Invasive Stabilization System (LISS).There are many screw holes on the plate allow surgeons to insert screws. The number and pattern of screws in use are critical because of the strong link to fixation stability. However, the biomechanical behaviors of plating system with different number and pattern of screw haven’t been investigated and studied in a comprehensive model. Therefore, the aim of this study is to obtain the biomechanical properties, using diverse numbers and patterns of screw and fracture sites in a relatively comprehensive numerical model.
The numerical model used in this study includes lower three segments of lumbar (cortical and cancellous bone), discs, pelvis, joints and femur. They are all created by applying the technique, Computer Tomography Scan(CTS). The plating system including locking plate, screws is developed with the software Solidworks. All numerical parts are imported into ANSYS 14.5 to do analyses. This study takes into account two models (lumbar-pelvis-femur model and only femur model), three fracture sites, eight different screw numbers and six screw configurations. Stresses on the top surface of bone plate and displacement of whole system are available in the numerical results. Biomechanical experiments are conducted with the equipment, INSTRON-8872. Six varying number of screws in use are chosen to carry out compression tests. Force-displacement curves are obtained during the biomechanical tests. Numerical and experimental outcomes are compared in the form of displacement and stiffness.
Biomechanical experiments and numerical analyses show that less number of screws in use can raise the displacement of whole system. The screw configurations with shorter working length are most likely to have low displacement as a result. Nearer to distal end fracture occurs, more unstable the system would be.
致謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 介紹 1
1.1 研究動機 1
1.2 股骨骨折原因 1
1.3 股骨骨折分類 1
1.4 骨髓內釘(Intramedullary Nail)介紹 3
1.5 鎖定式骨板(Locking Compression Plate)介紹 4
1.5.1 鎖定式骨板優勢 5
1.6 文獻回顧 6
第2章 材料和方法 17
2.1 骨骼與植入物模型建立 17
2.1.1 股骨遠端骨折建立 19
2.1.2 鎖定式骨板系統建立 19
2.2 有限元素模擬分析 20
2.2.1 材料參數 21
2.2.2 網格劃分的方法及大小 21
2.2.3 邊界負載條件 22
2.2.4 腰椎-骨盆-股骨模型位移驗證 25
2.3 生物力學實驗 26
2.3.1 骨板骨螺絲 26
2.3.2 生物力學實驗架設 27
第3章 結果 29
3.1 有限元素分析 29
3.1.1 收斂性分析 30
3.1.2 單純考慮股骨模型的位移結果 32
3.1.3 腰椎-骨盆-股骨模型位移結果 37
3.1.4 單純考慮股骨模型和腰椎-骨盆-股骨模型位移比較 41
3.1.5 不同骨折位置對位移量的影響 42
3.1.6 有限元素應力結果 45
3.2 生物力學實驗 56
第4章 討論 60
第5章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 64
參考文獻 66
1.Van der Steenhoven TJ, Schaasberg W, de Vries AC, Valstar ER, Nelissen RG. Cyclic loading of fractured cadaveric femurs after elastomer femoroplasty: an in vitro biomechanical study. Clin Biomech (Bristol, Avon), 2012. 27(8): p. 819-23.
2.Bong MR, Egol KA, Koval KJ, Kummer FJ, Su ET, Iesaka K, Bayer J, Di Cesare PE. Comparison of the LISS and a retrograde-inserted supracondylar intramedullary nail for fixation of a periprosthetic distal femur fracture proximal to a total knee arthroplasty. The Journal of Arthroplasty, 2002. 17(7): p. 876-881.
3.Ricci WM1, Gallagher B, Haidukewych GJ. Intramedullary nailing of femoral shaft fractures: Current concepts. Journal of the American Academy of Orthopaedic Surgeons, 2009. 17(5): p. 296-305.
4.Papakostidis C1, Psyllakis I, Vardakas D, Grestas A, Giannoudis PV. Femoral-shaft fractures and nonunions treated wih intrame- dullary nails: the role of dynamisation. Injury, 2011. 42(11): p. 1353-61.
5.陳建志, 淺談骨髓內釘及骨釘骨板. 2001.
6. Alho A1, Ekeland A, Stromsoe K. Subtrochanteric femoral fractures
treated with locked intramedullary nails: Experience from 31 cases.
Acta Orthopaedica, 1991. 62(6): p. 573-576.
7. Vidyadhara S1, Vamsi K, Rao SK, Gnanadoss JJ, Pandian S. Use of
intramedullary fibular strut graft: A novel adjunct to plating in the treatment of osteoporotic humeral shaft nonunion. International Orthopaedics, 2009. 33(4): p. 1009-1014.
8.Oh CW, Kim JJ, Byun YS, Oh JK, Kim JW, Kim SY, Park BC, Lee
HJ. Minimally invasive plate osteosynthesis of subtrochanteric femur fractures with a locking plate: A prospective series of 20 fractures. Archives of Orthopaedic and Trauma Surgery, 2009 129 (12): p. 1659-1665.
9.Nayak RM1, Koichade MR, Umre AN, Ingle MV. Minimally invasive plate osteosynthesis using a locking compression plate for distal femoral fractures. Journal of orthopaedic surgery (Hong Kong), 2011. 19(2): p. 185-190.
10.徐慶琪, 黃興祿, 毛世威, 趙振綱, 林晉, 股骨鎖定式骨髓內釘治療之有限元素分析. 黃埔學報, 2007. 五十二期.
11.Tornkvist H, Hearn TC, Schatzker J. The Strength of Plate Fixation in Relation to the Number and Spacing of Bone Screws. Journal of Orthopaedic Trauma, 1996. 10(3): p. 204-208.
12. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. Journal of Orthopaedic Trauma, 2001. 15(5): p. 333-337.
13. Freeman AL, Tornetta P 3rd, Schmidt A, Bechtold J, Ricci W, Fleming M. How much do locked screws add to the fixation of "hybrid" plate constructs in osteoporotic bone? Journal of Orthopae- dic Trauma, 2010. 24(3): p. 163-169.
14. Hak DJ, Althausen P, Hazelwood SJ. Locked plate fixation of osteoporotic humeral shaft fractures: Are two locking screws per segment enough? Journal of Orthopaedic Trauma, 2010. 24(4): p. 207-211.
15. ElMaraghy AW1, ElMaraghy MW, Nousiainen M, Richards RR, Schemitsch EH. Influence of the number of cortices on the stiffness of plate fixation of diaphyseal fractures. Journal of Orthopaedic Trauma, 2001. 15(3): p. 186-191
16. Egol KA1, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. Journal of Orthopaedic Trauma, 2004. 18(8): p. 488-493.
17. Yanez A, Carta JA, Garces G. Biomechanical evaluation of a new system to improve screw fixation in osteoporotic bones. Med Eng Phys, 2010. 32(5): p. 532-41.
18. Lee CH, Shih KS, Hsu CC, Cho T. Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Med Eng Phys, 2014. 36(1): p. 57-64.
19. Field JR1, Tornkvist H, Hearn TC, Sumner-Smith G, Woodside TD. The influence of screw omission on construction stiffness and bone surface strain in the application of bone plates to cadaveric bone. Injury, 1999.
20. Ellis T1, Bourgeault CA, Kyle RF. Screw Position Affects Dynamic Compression Plate Strain in an In Vitro Fracture Model. 2001.
21. Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury, 2007. 38(3): p. 358-64.
22. Otto RJ1, Moed BR, Bledsoe JG. Biomechanical Comparison of Polyaxial-Type Locking PlatesandaFixed-Angle Locking Plate for Internal Fixation of Distal Femur Fractures. ORIGINAL ARTICLE, 2009.
23. Freeman AL, Tornetta P 3rd, Schmidt A, Bechtold J, Ricci W, Fleming M. How Much Do Locked Screws Add to the Fixation of “Hybrid’’ Plate Constructs in Osteoporotic Bone? ORIGINAL ARTICLE, 2010.
24. Hak DJ, Althausen P, Hazelwood SJ. Locked Plate Fixation of Osteoporotic Humeral Shaft Fractures: Are Two Locking Screws Per Segment Enough? 2010.
25. Wahnert D, Hoffmeier K, Frober R, Hofmann GO, Muckley T. Distal femur fractures of the elderly--different treatment options in a biomechanical comparison. Injury, 2011. 42(7): p. 655-9.
26. Moazen M1, Jones AC, Leonidou A, Jin Z, Wilcox RK, Tsiridis E. Rigid versus flexible plate fixation for periprosthetic femoral fracture-computer modelling of a clinical case. Med Eng Phys, 2012.34(8): p. 1041-8.
27. Assari S, Kaufmann A, Darvish K, Park J, Haw J, Safadi , Rehman S. Biomechanical comparison of locked plating and spiral blade retrograde nailing of supracondylar femur fractures. Injury, 2013. 44(10): p. 1340-5.
28. Sabalic S, Kodvanj J, Pavic A. Comparative study of three models of extra-articular distal humerusfracture osteosynthesis using the finite element method on an osteoporotic computational model. Injury, Int. J. Care Injured 44 S3 (2013) S56–S61, 2013.
29. Chen SH, Chiang MC, Hung CH, Lin SC, Chang HW. Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. Knee, 2014. 21(1): p. 224-31.
30. Wang CJ1, Yettram AL, Yao MS, Procter P. Finite element analysis of a Gamma nail within a fractured femur. 1998.
31. Shih KS, Hsu CC, Hsu TP. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: A finite element study. Journal of Trauma and Acute Care Surgery, 2012. 72(2): p. E46-E53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔