|
[1]Su, J. W., 2013, Reconfiguration Analysis of a Reconfigurable Cube Mechanism, Master Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan [2]Kuo, C. H., Su, J. W., 2014, “On the Configurational Isomorphism of a Reconfigurable Cube Mechanism,” The 3rd IFToMM Asian Conference on Mechanism and Machine Science, , Tianjin, China, 9-10 July. [3]Kuo, C.-H., Su, C.-W., 2015, “Configuration Analysis of a Class of Reconfigurable Cube Mechanisms: Mobility and Configuration Isomorphism,” Mechanism and Machine Theory, In press [4]Lee, C. C., 2004, “Discontinuous Mobility of a Folding Square-Block Toy - a Class of Single Loop Spatial Mechanism,” 7th Biennial Conference on Engineering Systems Design and Analysis Manchester, United Kingdom 19-22 July, Vol. 1, pp. 709-715. [5]Kuo, C. H., Yan, H. S., 2007, “On the Mobility and Configuration Singularity of Mechanisms with Variable Topologies,” ASME Journal of Mechanical Design, 129(6), pp. 617-624. [6]Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon, Oxford, UK. [7]Baker, J. E., 1978, “On the Investigation of Extreme in Linkage Analysis, Using Screw System Algebra,” Mechanism and Machine Theory, 13(3), pp. 333-343. [8]Baker, J. E., 1980, “Screw System Algebra Applied to Special Linkage Configurations,” Mechanism and Machine Theory, 15(4), pp. 255-265. [9]Chang, W. T., Lin, C. C., Wu, L. I., 2005, “A Note on Grashof's Theorem,” Journal of Marine Science and Technology, 13(4), pp. 239-248. [10]Ding, X. L., Li, X., 2015, “Design of a Type of Deployable/Retractable Mechanism Using Friction Self-Locking Joint Units,” Mechanism and Machine Theory, 92, pp. 273-288. [11]Galletti, C., Fanghella, P., 2001, “Single-Loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761. [12]Galletti, C., Giannotti, E., 2002, “Multiloop Kinematotropic Mechanisms,” ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec., Canada, Sep. 29-Oct. 2, American Society of Mechanical Engineers, pp. 455-460. [13]Yan, H. S., Kang, C. H., 2009, “Configuration Synthesis of Mechanisms with Variable Topologies,” Mechanism and Machine Theory, 44(5), pp. 896-911. [14]Fang, Y. F., Tsai, L. W., 2004, “Enumeration of a Class of Overconstrained Mechanisms Using the Theory of Reciprocal Screws,” Mechanism and Machine Theory, 39(11), pp. 1175-1187. [15]Ye, W., Fang, Y. F., Zhang, K. T., Guo, S., 2014, “A New Family of Reconfigurable Parallel Mechanisms with Diamond Kinematotropic Chain,” Mechanism and Machine Theory, 74, pp. 1-9. [16]Martins, D., Simoni, R., 2009, “Enumeration of Planar Metamorphic Robots Configurations,” Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, 22-24 June, pp. 580-588. [17]Liu, J. G., Wang, Y. C., Ma, S. G., Li, Y. M., 2010, “Enumeration of the Non-Isomorphic Configurations for a Reconfigurable Modular Robot with Square-Cubic-Cell Modules,” International Journal of Advanced Robotic Systems, 7(4), pp. 58-68. [18]Viquerat, A. D., Hutt, T., Guest, S. D., 2013, “A Plane Symmetric 6r Foldable Ring,” Mechanism and Machine Theory, 63, pp. 73-88. [19]Touchmore, Company Web Page, Available at www.touchmore.de [20]Dai, J. S., Rees Jones, J., 1999, “Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME Journal of Mechanical Design, 121(3), pp. 375-382. [21]Zhang, K., Fang, Y., Fang, H., Dai, J. S., 2010, “Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism,” ASME Journal of Mechanisms and Robotics, 2(3), p. 10.1115. [22]Dai, J. S., Rees Jones, J., 2002, “Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(10), pp. 959-970. [23]Yao, W., Dai, J. S., 2008, “Dexterous Manipulation Origami Cartons with Robotic Fingers Based on the Interactive Configuration Space,” Journal of Mechanical Design, Transactions of the ASME, 130(2) [24]Zhang, K., Dai, J. S., 2014, “A Kirigami-Inspired 8r Linkage and Its Evolved Overconstrained 6r Linkages with the Rotational Symmetry of Order Two,” Journal of Mechanisms and Robotics, 6(2) [25]Wei, G., Dai, J. S., 2014, “Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms,” Journal of Mechanical Design, Transactions of the ASME, 136(5) [26]Emmanouil, E., Wei, G., Dai, J. S., 2015, “Spherical Trigonometry Constrained Kinematics for a Dexterous Robotic Hand with an Articulated Palm,” Robotica, p. 10.1017. [27]Zhang, K., Dai, J. S., Fang, Y., 2010, “Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism,” ASME Journal of Mechanical Design, 132(12), p. 10.1115. [28]Winder, B. G., Magleby, S. P., Howell, L. L., 2009, “Kinematic Representations of Pop-up Paper Mechanisms,” Journal of Mechanisms and Robotics, 1(2), pp. 1-10. [29]Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, D. A., Walkemeyer, P. E., Trease, B. P., Magleby, S. P., Howell, L. L., 2013, “Accommodating Thickness in Origami-Based Deployable Arrays,” ASME Journal of Mechanical Design 135(11), p. 10.1115. [30]Bowen, L. A., Grames, C. L., Magleby, S. P., Howell, L. L., Lang, R. J., 2013, “A Classification of Action Origami as Systems of Spherical Mechanisms,” ASME Journal of Mechanical Design 135(11), p. 10.1115. [31]Bowen, L. A., Baxter, W. L., Magleby, S. P., Howell, L. L., 2014, “A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami,” Mechanism and Machine Theory, 77, pp. 13-24. [32]Delimont, I. L., Magleby, S. P., Howell, L. L., 2014, “Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms,” ASME Journal of Mechanisms and Robotics, 7(1), p. 011009. [33]Nelson, T. G., Lang, R. J., Magleby, S. P., Howell, L. L., 2015, “Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-Core),” Mechanism and Machine Theory, p. 10.1016. [34]Hanna, B. H., Magleby, S. P., Lang, R. J., Howell, L. L., 2015, “Force-Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms,” ASME Journal of Applied Mechanics 82(8), p. 10.1115. [35]Davis, E., Demaine, E. D., Demaine, M. L., Ramseyer, J., 2013, “Reconstructing David Huffman's Origami Tessellations,” ASME Journal of Mechanical Design, 135(11), p. 10.1115. [36]Gao, W., Ramani, K., Cipra, R. J., Siegmund, T., 2013, “Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding,” ASME Journal of Mechanical Design, 135(11), p. 10.1115. [37]Abdul-Sater, K., Irlinger, F., Lueth, T. C., 2013, “Two-Configuration Synthesis of Origami-Guided Planar, Spherical and Spatial Revolute-Revolute Chains,” ASME Journal of Mechanisms and Robotics, 5(3), p. 10.1115.
|