跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳翎棋
研究生(外文):Lin-Chi Wu
論文名稱:可重構方塊機構與其變形機構之研究
論文名稱(外文):A Study on a Class of Reconfigurable Cube Mechanisms and its Variant
指導教授:郭進星郭進星引用關係
指導教授(外文):Chin-Hsing KUO
口試委員:郭進星
口試委員(外文):Chin-Hsing KUO
口試日期:2015-07-27
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:76
中文關鍵詞:可重構機構可變拓樸機構螺旋理論構形合成
外文關鍵詞:reconfigurable mechanismvariable topology mechanismscrew theoryconfiguration synthesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
可重構方塊機構(Reconfigurable cube mechanism)為一個由2x2x2個正方體組成的益智玩具,該機構可循環變化構形,以展示正方體上的組合圖畫。本研究首先探討可重構方塊機構之奇異構形,應用螺旋理論判認各操作狀態下之靜對構形(Stationary configuration)與不定構形(Uncertainty configuration),並據此分析機構於每個狀態之可動度(Mobility)。接著,我們合成該可重構方塊機構之所有可行初始構形,驗證現有設計為具循環轉換特性之唯一可行構形。此外,本研究亦探討一與可重構方塊機構具相似重構特性與圖畫展示能力之可重構紙板機構(Reconfigurable panel mechanism),提出可避免紙板干涉而又能達到可重構特性之新型可重構紙板機構設計。
Reconfigurable cube mechanism (RCM) is a puzzle toy made by 23 sub-cubes. The mechanism can transform its configuration cyclically, and it can demonstrate drawings on the surfaces of the sub-cubes with variable configurations. First, we discussed singular configurations of the RCM, identifying stationary configurations and uncertainty configurations by screw theory. We also analyzed the mobility at every operable stage. Next, we synthesized all feasible initial topological configurations of the RCM and verified that the existing RCM is the only feasible design which can transform its configuration cyclically. In addition, we also studied a reconfigurable panel mechanism (RPM), which is a variant of the RCM with different shape profile and possesses similar reconfigurability to the RCM. We also came up with a new RPM that can avoid interference of the links. It is expected that the outcome of this work can contribute to creative design of reconfigurable cube and/or panel mechanisms.
Chapter 1 Introduction 1
1.1 Introduction to RCM 1
1.2 Motivations and Objectives 4
1.3 Literature Review 5
1.3.1 RCM Review 5
1.3.2 Stationary Configuration and Uncertainty Configuration 5
1.3.3 Configuration Synthesis 6
1.3.4 Shape Profile Design 7
1.3.5 Origami Mechanisms 8
1.3 Thesis Organization 10
Chapter 2 Configuration Singularity Analysis of the RCM 12
2.1 Stationary Configuration and Uncertainty Configuration 12
2.2 Mobility 13
2.3 Stationary Configuration Analysis 15
2.4 Uncertainty Configuration Analysis 18
2.5 Summary and Discussions 21
Chapter 3 Configuration Synthesis for RCMs with 23 Sub-Cubes 22
3.1 Enumerating the Topological Configurations of RCM 22
3.1.1 Connecting Sequence for RCM 22
3.1.2 Enumerating All Possible Topological Configurations 25
3.2 Eliminating the Topological Configurations of RCM 26
3.2.1 Repeated joint rule 27
3.2.2 One co-axial joint pair rule 30
3.2.3 Configuration isomorphism detection 31
3.2.4 Inside joint rule 37
3.2.5 Cyclic reconfiguration verification 38
3.3 Summary and Discussions 44
Chapter 4 Shape Profile Design: From Reconfigurable Cube Mechanism to the Reconfigurable Panel Mechanism (RPM) 45
4.1 Introduction to RPM 45
4.2 Topological Configuration and Transforming 47
4.3 Configuration Characteristics 53
4.4 Drawings Revealing Analysis 55
4.5 Summary and Discussions 61
Chapter 5 Conclusions and Suggestions 62
5.1 Conclusions 62
5.2 Suggestions 63
REFERENCES 64
[1]Su, J. W., 2013, Reconfiguration Analysis of a Reconfigurable Cube Mechanism, Master Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
[2]Kuo, C. H., Su, J. W., 2014, “On the Configurational Isomorphism of a Reconfigurable Cube Mechanism,” The 3rd IFToMM Asian Conference on Mechanism and Machine Science, , Tianjin, China, 9-10 July.
[3]Kuo, C.-H., Su, C.-W., 2015, “Configuration Analysis of a Class of Reconfigurable Cube Mechanisms: Mobility and Configuration Isomorphism,” Mechanism and Machine Theory, In press
[4]Lee, C. C., 2004, “Discontinuous Mobility of a Folding Square-Block Toy - a Class of Single Loop Spatial Mechanism,” 7th Biennial Conference on Engineering Systems Design and Analysis Manchester, United Kingdom 19-22 July, Vol. 1, pp. 709-715.
[5]Kuo, C. H., Yan, H. S., 2007, “On the Mobility and Configuration Singularity of Mechanisms with Variable Topologies,” ASME Journal of Mechanical Design, 129(6), pp. 617-624.
[6]Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon, Oxford, UK.
[7]Baker, J. E., 1978, “On the Investigation of Extreme in Linkage Analysis, Using Screw System Algebra,” Mechanism and Machine Theory, 13(3), pp. 333-343.
[8]Baker, J. E., 1980, “Screw System Algebra Applied to Special Linkage Configurations,” Mechanism and Machine Theory, 15(4), pp. 255-265.
[9]Chang, W. T., Lin, C. C., Wu, L. I., 2005, “A Note on Grashof's Theorem,” Journal of Marine Science and Technology, 13(4), pp. 239-248.
[10]Ding, X. L., Li, X., 2015, “Design of a Type of Deployable/Retractable Mechanism Using Friction Self-Locking Joint Units,” Mechanism and Machine Theory, 92, pp. 273-288.
[11]Galletti, C., Fanghella, P., 2001, “Single-Loop Kinematotropic Mechanisms,” Mechanism and Machine Theory, 36(6), pp. 743-761.
[12]Galletti, C., Giannotti, E., 2002, “Multiloop Kinematotropic Mechanisms,” ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec., Canada, Sep. 29-Oct. 2, American Society of Mechanical Engineers, pp. 455-460.
[13]Yan, H. S., Kang, C. H., 2009, “Configuration Synthesis of Mechanisms with Variable Topologies,” Mechanism and Machine Theory, 44(5), pp. 896-911.
[14]Fang, Y. F., Tsai, L. W., 2004, “Enumeration of a Class of Overconstrained Mechanisms Using the Theory of Reciprocal Screws,” Mechanism and Machine Theory, 39(11), pp. 1175-1187.
[15]Ye, W., Fang, Y. F., Zhang, K. T., Guo, S., 2014, “A New Family of Reconfigurable Parallel Mechanisms with Diamond Kinematotropic Chain,” Mechanism and Machine Theory, 74, pp. 1-9.
[16]Martins, D., Simoni, R., 2009, “Enumeration of Planar Metamorphic Robots Configurations,” Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009, 22-24 June, pp. 580-588.
[17]Liu, J. G., Wang, Y. C., Ma, S. G., Li, Y. M., 2010, “Enumeration of the Non-Isomorphic Configurations for a Reconfigurable Modular Robot with Square-Cubic-Cell Modules,” International Journal of Advanced Robotic Systems, 7(4), pp. 58-68.
[18]Viquerat, A. D., Hutt, T., Guest, S. D., 2013, “A Plane Symmetric 6r Foldable Ring,” Mechanism and Machine Theory, 63, pp. 73-88.
[19]Touchmore, Company Web Page, Available at www.touchmore.de
[20]Dai, J. S., Rees Jones, J., 1999, “Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME Journal of Mechanical Design, 121(3), pp. 375-382.
[21]Zhang, K., Fang, Y., Fang, H., Dai, J. S., 2010, “Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism,” ASME Journal of Mechanisms and Robotics, 2(3), p. 10.1115.
[22]Dai, J. S., Rees Jones, J., 2002, “Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(10), pp. 959-970.
[23]Yao, W., Dai, J. S., 2008, “Dexterous Manipulation Origami Cartons with Robotic Fingers Based on the Interactive Configuration Space,” Journal of Mechanical Design, Transactions of the ASME, 130(2)
[24]Zhang, K., Dai, J. S., 2014, “A Kirigami-Inspired 8r Linkage and Its Evolved Overconstrained 6r Linkages with the Rotational Symmetry of Order Two,” Journal of Mechanisms and Robotics, 6(2)
[25]Wei, G., Dai, J. S., 2014, “Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms,” Journal of Mechanical Design, Transactions of the ASME, 136(5)
[26]Emmanouil, E., Wei, G., Dai, J. S., 2015, “Spherical Trigonometry Constrained Kinematics for a Dexterous Robotic Hand with an Articulated Palm,” Robotica, p. 10.1017.
[27]Zhang, K., Dai, J. S., Fang, Y., 2010, “Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism,” ASME Journal of Mechanical Design, 132(12), p. 10.1115.
[28]Winder, B. G., Magleby, S. P., Howell, L. L., 2009, “Kinematic Representations of Pop-up Paper Mechanisms,” Journal of Mechanisms and Robotics, 1(2), pp. 1-10.
[29]Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, D. A., Walkemeyer, P. E., Trease, B. P., Magleby, S. P., Howell, L. L., 2013, “Accommodating Thickness in Origami-Based Deployable Arrays,” ASME Journal of Mechanical Design 135(11), p. 10.1115.
[30]Bowen, L. A., Grames, C. L., Magleby, S. P., Howell, L. L., Lang, R. J., 2013, “A Classification of Action Origami as Systems of Spherical Mechanisms,” ASME Journal of Mechanical Design 135(11), p. 10.1115.
[31]Bowen, L. A., Baxter, W. L., Magleby, S. P., Howell, L. L., 2014, “A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami,” Mechanism and Machine Theory, 77, pp. 13-24.
[32]Delimont, I. L., Magleby, S. P., Howell, L. L., 2014, “Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms,” ASME Journal of Mechanisms and Robotics, 7(1), p. 011009.
[33]Nelson, T. G., Lang, R. J., Magleby, S. P., Howell, L. L., 2015, “Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-Core),” Mechanism and Machine Theory, p. 10.1016.
[34]Hanna, B. H., Magleby, S. P., Lang, R. J., Howell, L. L., 2015, “Force-Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms,” ASME Journal of Applied Mechanics 82(8), p. 10.1115.
[35]Davis, E., Demaine, E. D., Demaine, M. L., Ramseyer, J., 2013, “Reconstructing David Huffman's Origami Tessellations,” ASME Journal of Mechanical Design, 135(11), p. 10.1115.
[36]Gao, W., Ramani, K., Cipra, R. J., Siegmund, T., 2013, “Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding,” ASME Journal of Mechanical Design, 135(11), p. 10.1115.
[37]Abdul-Sater, K., Irlinger, F., Lueth, T. C., 2013, “Two-Configuration Synthesis of Origami-Guided Planar, Spherical and Spatial Revolute-Revolute Chains,” ASME Journal of Mechanisms and Robotics, 5(3), p. 10.1115.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top