(3.238.186.43) 您好!臺灣時間:2021/02/25 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃正揚
研究生(外文):Halim Dinata
論文名稱:DEVELOPING A NOVEL METHODOLOGICAL FRAMEWORK FOR PROCEDURAL KNOWLEDGE ACQUISITION AND REPRESENTATION
論文名稱(外文):DEVELOPING A NOVEL METHODOLOGICAL FRAMEWORK FOR PROCEDURAL KNOWLEDGE ACQUISITION AND REPRESENTATION
指導教授:呂守陞呂守陞引用關係
指導教授(外文):Sou-Sen Leu
口試委員:呂守陞
口試委員(外文):Sou-Sen Leu
口試日期:2015-01-22
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:107
外文關鍵詞:Knowledge engineeringKnowledge AcquisitionKnowledge RepresentationKnowledge validationGreenery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
This thesis presents a methodological framework which integrates the knowledge acquisition and knowledge representation procedure to acquire knowledge of design. In previous studies, knowledge acquisition is identified as bottleneck and time-consuming process in expert system. During the study, several problems to convert knowledge from expert to the production rules are faced. The significant approaches developed are based on an experimental design and statistical background and they are applied to specific case studies, providing highly accurate results.
The objective of this thesis corresponds to an important part of knowledge acquisition aiming to the transform procedural knowledge into accessible rules form. Study case is applied in green building field especially in greenery design. The result proved that the finding methodology framework has an ability to overcome the limitation in previous study. The design of methodological framework together with their expected use in the future, are important elements related to the development of procedural rules using for design.
Due to the rapid development of knowledge in design, the framework should be extended to maintain the knowledge up-to date. The framework is only available for the same type of acquired knowledge.
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 3
1.3 Research Scope 3
1.4 Research Assumptions 4
1.5 Research Methodology 5
1.6 Research Outline 6
CHAPTER 2 LITERATURE REVIEW 7
2.1 Overview of Knowledge Engineering 7
2.1.1 Knowledge Elicitation 9
2.1.2 Major Categories of Knowledge 14
2.1.3 Source of knowledge 14
2.1.4 Multiple Expert 15
2.2 Knowledge Representation 16
2.3 Knowledge Validation 17
2.4 Summary 18
CHAPTER 3 RESEARCH METHODOLOGY 19
3.1 Research Flow Methodology 19
3.2 Methodological Framework. 21
3.3 Basic Concept of Taguchi Method 27
Design with Interaction 28
3.3.1 Projection Using Taguchi Method. 28
3.4 Categorical and Multinomial Logistic Regression 31
3.5 Data Mining 32
3.6 Summary 34
CHAPTER 4 MODELING AND VALIDATION 36
4.1 Summary of Primary Methodological Framework 36
4.2 Preprocessing (PRE) 38
4.2.1 Preparing Questionnaire 1 (PRE-1) 39
4.2.2 Interview Execution 1 (PRE-2) 39
4.2.3 Partitioning and Sub-grouping (PRE-3) 40
4.2.4 Constructing Orthogonal Array for Questionnaire (PRE-4) 46
4.3 Interview Execution II (P) 47
4.4 Post-Processing 47
4.4.1 Prediction (POST-1 and POST-2) 49
4.4.2 Data Transformation (POST-3) 52
4.4.3 Data Mining (POST-4) 53
4.5 Validation. 56
4.6 Summary 58
CHAPTER 5 METHODOLOGICAL FRAMEWORK CASE STUDY 60
5.1 Application in Greenery Design 60
5.2 Expert Comparison Analysis 70
5.3 Knowledge Validation 73
5.4 Technical Evaluation of Framework Process. 76
5.5 Summary 78
CHAPTER 6 CONCLUSION 79
6.1 Conclusion 79
6.2 Future Research 81
APPENDIX A: Taguchi Method Orthogonal Array 85
APPENDIX B: Questionnaire Form 1 87
APPENDIX C: Questionnaire Form II 89
APPENDIX D: Result of Questionnaire Form II 92
APPENDIX E: Production Rules of Greenery 94
APPENDIX F: Design Variable Combination Historical Data 95
APPENDIX G: Subgrouping Pattern 97
Bainbridge, L. (1979). "Verbal reports as evidence of the process operator's knowledge." International Journal of Man-Machine Studies 11(4): 411-436.

Baker, N. C. and S. J. Fenves (1987). "A knowledge acquisition study of structural engineers performing preliminary design." EDRC Technical Report EDRC-12-19-87,Design Res. Center, Carnegie Mellon Univ., Pittsburgh, Penn.,.

Breiman, L. (1984). Classification and regression trees, Wadsworth International Group.

Burge, J. E. (1998). Knowledge elicitation for design task sequencing knowledge, Master's thesis, Worcester Polytechnic Institute.

Byrd, T. A. (1995). "Expert systems implementation:: interviews with knowledge engineers." Industrial Management & Data Systems 95(10): 3-7.

Cohn, L., et al. (1988). "Knowledge Acquisition for Domain Experts." Journal of computing in civil engineering 2(2): 107-120.

Coury, B. G., et al. (1991). "Capturing and Representing Decision Processes in the Design of an Information System." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 35(17): 1223-1227.

Davis, R., et al. (1977). "Production rules as a representation for a knowledge-based consultation program." Artificial Intelligence 8(1): 15-45.

De La Garza, J. M. and C. W. Ibbs (1990). "Knowledge-elicitation study in construction scheduling domain." Journal of computing in civil engineering 4(2): 135-153.

Duda, R. O. and E. H. Shortliffe (1983). "Expert systems research." Science 220(4594): 261-268.

Emberey, C. L., et al. (2007). Application of knowledge engineering methodologies to support engineering design application development in aerospace. 7th AIAA Aviation Technology, Integration and Operations Conference (ATIO).

Feigenbaum, E. A. (1979). "Themes and case studies of knowledge engineering." Expert Systems in the Micro-Electronic Age: 3-25.

Geiwitz, J., et al. (1990). "An expert system for the selection of knowledge acquisition techniques." Santa Barbara, CA: Anacapa Sciences: 785-782.

Goodall, A. (1985). "The guide to expert systems. Learned Information." Inc., Medford, NJ.

Hayes-Roth, F., et al. (1983). Building expert systems, Addison-Wesley Longman Publishing Co., Inc.

Kit Yan, C. and T. S. Dillon (2014). Traffic flow prediction using orthogonal arrays and Takagi-Sugeno neural fuzzy models. Neural Networks (IJCNN), 2014 International Joint Conference on.

Liou, Y. I. (1990). Knowledge acquisition: issues, techniques, and methodology. Proceedings of the 1990 ACM SIGBDP conference on Trends and directions in expert systems, ACM.

Lloyd, C. J. and D. J. Frommer (2008). "Multinomial Logistic Regression: An Application to Estimating Performance of a Multiple Screening Test for Bowel Cancer when Negatives are Unverified." JRSSC 65.

Madaeni, S. and S. Koocheki (2006). "Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element." Chemical Engineering Journal 119(1): 37-44.

Mauter, M. S. and V. R. Palmer (2014). "Expert Elicitation of Trends in Marcellus Oil and Gas Wastewater Management." Journal of Environmental Engineering 140(5).

Novak, J. D. (1984). Learning how to learn, Cambridge University Press.

O'Keefe, R. M. and D. E. O'Leary (1993). "Performing and managing expert system validation." Advances in Expert Systems for Management 1: 141.

Peng, C.-Y. J. and R. N. Nichols (2003). "Using multinomial logistic models to predict adolescent behavioral risk." Journal of Modern Applied Statistical Methods 2(1): 16.

Ranjan, A., et al. (2002). "From process experts to a real‐time knowledge‐based system." Expert Systems 19(2): 69-79.

Rauff, J. V. (2005). "Data Mining: A Tutorial-Based Primer." Mathematics and Computer Education 39(3): 259.

Thordsen, M. L. (1991). "A comparison of two tools for cognitive task analysis: Concept mapping and the critical decision method." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 35(5): 283-285.

Turban, E., et al. (2005). Decision Support Systems and Intelligent Systems 7 “” Edition, Pearson Prentice Hall.

Wada, T., et al. (2001). Knowledge acquisition from both human expert and data. Advances in Knowledge Discovery and Data Mining, Springer: 550-561.

Wright, G. and P. Ayton (1987). "Eliciting and modelling expert knowledge." Decision Support Systems 3(1): 13-26.

Wu, C. J. and M. S. Hamada (2011). Experiments: planning, analysis, and optimization, John Wiley & Sons.

Xu, H. (2002). "An algorithm for constructing orthogonal and nearly-orthogonal arrays with mixed levels and small runs." Technometrics 44(4): 356-368.

Zocchi, S. S. and A. C. Atkinson (1999). "Optimum experimental designs for multinomial logistic models." Biometrics 55(2): 437-444.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔