(3.232.129.123) 您好!臺灣時間:2021/02/26 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉俊良
研究生(外文):Chung-Liang Liu
論文名稱:應用田口方法開發連續式奈米纖維紗線製程之研究
論文名稱(外文):Developing Continuous Process of Electrospun Nanofibrous Yarn By Taguchi Method Analysis
指導教授:蘇清淵
指導教授(外文):Chin-Iuan Su
口試委員:蘇清淵
口試委員(外文):Chin-Iuan Su
口試日期:2014-01-29
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:靜電紡絲奈米纖維紗田口方法變異數分析主成分分析法聚丙烯腈
外文關鍵詞:ElectrospiningNanofibrous yarnTaguchiANOVAPCAPAN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來隨著靜電紡絲技術的發展,奈米纖維紗的開發已成為學者研究的焦點之一。本研究將架構高穩定、高生產效率之連續化奈米纖維紗線之新型成紗機構,藉由田口式直交表之實驗方法,以較小的實驗次數、較短的試驗週期,以及較低的實驗成本評估各因子所帶來之影響,得到各特性高於平均值之上之參數組合,並以變異數分析與主成分分析法尋求權衡各品質特性之奈米纖維紗線實驗參數組合。
本研究以紡出11.4tex之紗支纖度為目標,固定電壓20kV,初始溫度與相對溼度分別設定30±2℃/30±3%RH,使用兩紡嘴之間距為20cm,捲取速度為100cm/min,撚係數為25,收集面尖端和捲取之間距為30cm,實驗中四個因子與三組參數設定為延伸倍率(1.0倍、1.5倍、2.0倍),紡嘴號數(20G、22G、24G),紡絲流速(3ml/hr、5ml/hr、7ml/hr)與延伸溫度(80 °C、100 °C、120 °C),以田口式直交表L9(34)進行實驗規劃。經由有系統的量化評估,利用因子之訊號雜訊比反應圖歸納奈米纖維紗中之平均纖維直徑、纖維直徑變異係數、纖維排列角度標準差三種品質特性各別之最佳參數組合,並進一步經由熱延伸之最適化設計提高纖維之順向性,提升聚丙烯腈奈米纖維紗強力,經由有系統之實驗設計,驗證此新型機構適用於連續化奈米纖維紗之生產,提供日後深入發展奈米纖維紗技術之參考。  
經過最佳化參數分析後,可得到此機構中以纖維細度、纖維平均度與纖維順向度為品質特性之最佳參數組合,再以主成分分析法求得權衡此三種品質特性之最佳參數,其最佳參數組合為22G紡嘴、紡絲流速7mL/hr、延伸倍率2倍以及延伸溫度120 °C,奈米纖維紗之強力為2.72cN/tex。
實驗中設定撚度為7.4TPC,撚係數為25之條件,求得紗支纖度為11.4tex,以此為目標進行實驗,而實驗結果大致落在7.4tex至12tex之間,再進行物性測試,得到在紗支纖度為10.95tex的情況下,其纖維較為均勻,應力也較大,其值達到3.17cN/tex,由實驗結果得知,延伸倍率與延伸溫度的增加,皆會使應力提升。
In recent years, with the development of electrospinning technology, the development of nanofiber yarn has become one of the focused research. The goal of this study is to design a continuous nanofiber yarn mechanism with high steady and high production efficient. Through Taguchi orthogonal array and analysis of variance (ANOVA), using smaller experimental frequency, shorter experimental period and lower experimental costs to evaluate the effect of each factors, the optimum parameters for different quality characteristics can be determined. Further, the multiple quality characteristics is analyzed by ANOVA and principal component analysis (PCA).
In this study, spinning 11.4tex as target, voltage is 20kV, temperature and humidity are set as 30±2℃/30±3%RH, the discussed control factors are draw ratio, nozzle size, flow rate, and elongation temperature. Draw ratio use 1.0times, 1.5times and 2.0times. Nozzle size use 20G(0.6mm), 22G(0.42mm) and 24G(0.31mm). Flow rate use 3ml/hr, 5ml/hr and 7ml/hr. Elongation temperature use 80 °C, 100 °C and 120 °C. The experiment is designed by Taguchi L9(34) orthogonal array. The considered quality characteristics are fiber diameter, fiber uniformity and fiber arrangement. Further, through the optimum design of hot drawing conditions, the strength of PAN nanofiber yarn can be improved. According to this experiment design, the feasibility of this novel mechanism for continuous nanofibrous yarn can be verified, and the result can provide the reference for technology of nanofiber yarn’s development in the future.
According to experiments, three quality characteristics of fiber diameter, fiber uniformity and fiber agreement have optimum parameters. After principal component analysis, characteristics occurs as nozzle is 22G, flow rate is 7ml/hr, draw ratio is 2 and hot elongation temperature is 120 °C. In addition, the tensile of nanofibrous yarn is 2.72cN/tex
This study use 7.4 degree of twist and 25 coefficient of twist get yarn fitness 11.4tex, set it as target, experiment of yarn fitness is about 7.4tex to 12tex. After physical characteristics test, the yarn fitness of 10.95tex is more uniform and has more stress. According to these experiments, the higher the draw ratio and elongation temperature, the higher the strain.
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XI
1 第一章、緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 國內外靜電紡絲法研究概況 3
1.4 奈米纖維製備法 4
1.4.1 拉拔法(Drawing) 6
1.4.2 模板合成(Template Synthesis) 7
1.4.3 相分離(Phase Separation) 7
1.4.4 自組裝(Self-Assembly) 8
1.4.5 靜電紡絲法(Electrospinning) 8
1.5 實驗動機與目的 9
2 第二章、理論 11
2.1 靜電紡絲原理 11
2.1.1 基本原理 11
2.1.2 參數設定 12
2.2 靜電紡絲機構 16
2.2.1 奈米纖維膜成形機構 17
2.2.2 奈米纖維紗線成形機構 19
3 第三章、製程參數最佳化理論 21
3.1 實驗方法概論 21
3.1.1 試誤法 21
3.1.2 一次一因子法 21
3.1.3 全因子法 22
3.1.4 田口式直交表實驗法 22
3.2 田口方法(Taguchi Method) 23
3.2.1 直交表 24
3.2.2 訊號雜訊比 27
3.3 變異數分析 31
3.3.1 標準差 32
3.3.2 變異平方和 32
3.3.3 自由度 33
3.3.4 均方 33
3.3.5 淨平方和 33
3.3.6 F值 34
3.3.7 貢獻度 34
3.3.8 合併誤差 34
3.3.9 信賴區間 35
3.4 主成分分析法 36
3.4.1 原理概述 36
3.4.2 方法應用 37
4 第四章、實驗 40
4.1 實驗材料 40
4.2 實驗設備與儀器 40
4.3 實驗流程 41
4.4 實驗方法 42
4.4.1 靜電紡絲溶液配製 42
4.4.2 靜電紡絲工程 42
4.4.3 奈米纖維紗線成形工程 42
4.5 實驗分析 44
4.5.1 品質特性分析 45
4.5.2 奈米纖維紗線物性分析 47
5 第五章、結果與討論 48
5.1 奈米纖維紗線微細結構分析 48
5.1.1 纖維平均直徑分析 53
5.1.2 纖維直徑變異度分析 57
5.1.3 纖維排列角度標準差分析 60
5.2 品質特性確認實驗 63
5.2.1 纖維平均直徑確認實驗 63
5.2.2 纖維直徑變異度確認實驗 64
5.2.3 纖維排列角度標準差確認實驗 65
5.3 多重品質評估 66
5.4 奈米纖維紗物性測試 73
5.4.1 紗支均勻度測試 73
5.4.2 機械強度測試 76
6 第六章、結論 78
參考文獻 80
附錄 89
1.Rocco, M.C., William, R. S., Alivisiatos P., editors, National Science and technology Council (1999).
2.Bhardwaj, N., and Kundu, S. C., "Electrospinning: A Fascinating Fiber Fabrication Technique," Biotechnol Adv, Vol. 28, No. 3, pp. 325-347 (2010)
3.Formhals A., U.S. Patent, 1975504 (1934).
4.Stanger, J., Tucker, N., and Staiger, M., Electrospinning, United Kingdom (2005)
5.Edelstein , A.S. and Cammarate, R.C., Chap.1 in Nanomaterails: Synthesis, Properties and Applications, Ed.by A.S. Edelstein and R.C.Cammarate, IOP Publishing (1996)
6.經濟部工業局,產業用纖維,紡織綜合研究所發行,p124~p178,(2004)
7.黃楠儒,氣相成長碳纖維/炭管之研究,國立成功大學-材料科學及工程學系,碩士論文,(1998)
8.張淇芝,基材備製對氣相成長碳纖維/管的影響,國立成功大學-材料科學及工程學系,碩士論文,(2000)
9.Frank, K. K. "Bridging the Gap between Nano and Marco World" Nanofiber Technology, Fibrous Materials Research Laboratory, Department of Materials Science and Engineering, Drexel Uni-versity,Philadelphia, pa. 19104,U.S.A(2004)
10.Formhals, A.,"Process And Apparatus for Preparing Artificial Threads", U. S. Pat., 1975704 (1934)
11.Zhou, F. L. and Gong, R. H. Zhou F. L. and Gong R. H. "Manufacturing technologies of polymeric nanofibres and nanofibre yarns "Department of Textiles & Paper, School of Materials, University of Manchester, Manchester M60 1QD, UK, Polym Int, Vol. 57, No. 6, pp. 837–845 (2008)
12.Dzenis, Y. A. and Reneker, D. H. Proceedings of Technical Conference.American Society for Compo-sites, pp. 657–665(1994)
13.Reneker D. H. and Chun I. "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology, Vol. 7, No. 3, pp. 216-223 (1996).
14.Lee, S., and Obendorf, S. K. "Use of Electrospun Nanofiber Web for Protective Textile Materials as Barriers to Liquid Penetration," Textile Research Journal, Vol. 77, pp. 696-702 (2007)
15.Feng, C., Khulbe, K. C., and Tabe, S. "Volatile Organic Compound Removal by Membrane Gas Stripping Using Electro-Spun," Desalination, Vol. 287, pp. 98-102 (2012)
16.Su, C.-I., Shih, J.-H., Huang, M.-S., Wang, C.-M., Shih, W.-C., and Liu, Y.-S. "A Study of Hydrophobic Electrospun Membrane Applied in Seawater Desalination by Membrane Distillation," Fibers and Polymers, Vol. 13, pp. 698-702 (2012)
17.Shirazi, M. M. A., Kargari, A., and Shirazi, M. J. A. "Direct Contact Membrane Distillation for Seawater Desalination," Desalination and Water Treatment, Vol. 49, No. 1-3, pp. 368-375 (2012)
18.Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. "Electrospinning of Nano/micro Scale Poly(L-lactic acid) Aligned Fibers and Their Potential in Neural Tissue Engineering," Biomaterials, Vol. 26, No. 15, pp. 2603-2610 (2005)
19.Dabirian, F., Ravandi, S. A. H., Hinestroza, J. P., and Abuzade, R. A. "Conformal Coating of Yarns and Wires With Electrospun Nanofibers," Polymer Engineering & Science, Vol. 52, No. 8, pp. 1724-1732 (2012)
20.Rocco M.C., William R.S., P.Alivisiatos, editors, "A Study on Fabrication and Functional Properties of PAN Filtration Nanofiber Membrane by Taguchi Method" Nanotechnology Research Directions:IWGN Workshop Report, National Science and technology Council, (1999).
21.Huang, Z.-M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Composites Science and Technology, Vol. 63, No. 15, pp. 2223-2253 (2003)
22.Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., and Ma, Z. An Introduction to Electrospinning and Nanofibers. USA: World Scientific Publishing Co. Pte. Ltd. (2005)
23.BAJAKOVA, J., CHALOUPEK, J., LUKAŠ, D., and LACARIN, M. "„DRAWING“- THE PRODUCTION OF INDIVIDUAL NANOFIBERS BY EXPERIMENTAL," NANOCON 2011. ,Vol. 9, Czech Republic, Brno, pp. 21-23 (2011)
24.Nain, A. S., Wong, J. C., Amon, C., and Sitti, M. "Drawing Suspended Polymer Micro/Nanofibers Using Glass Micropipettes," Applied Physics Letters, Vol. 89, pp. 183105-183107 (2006)
25.Wu, C.-H., Shr, J.-F., Wu, C.-F., and Hsieh, C.-T., "Adsorption Energy Distribution of Carbon Tetrachloride on Carbon Nanofiber Arrays Prepared by Template Synthesis," Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, No. 4, pp. 814-821 (2008)
26.Ma, P. X., and Zhang, R., "Synthetic Nano-Scale Fibrous Extracellular Matrix," J. Biomed. Mater. Res., Vol. 46, pp. 60-72 (1999)
27.Toksoz, S., Mammadov, R., Tekinay, A. B., and Guler, M. O., "Electrostatic Effects on Nanofiber Formation of Self-Assembling Peptide Amphiphiles," J Colloid Interface Sci, Vol. 356, No. 1, pp. 131-137 (2011)
28.Nagai, Y., Unsworth, L. D., Koutsopoulos, S., and Zhang, S., "Slow Release of Molecules in Self-Assembling Peptide Nanofiber Scaffold," J Control Release ,Vol. 115, No. 1, pp. 18-25 (2006)
29.Hwang, W., Kim, B. H., Dandu, R., Cappello, J., Ghandehari, H., and Seog, J., "Surface Induced Nanofiber Growth by Self-Assembly of A Silk-Elastin-Like Protein Polymer," Langmuir, Vol. 25, No. 21, pp. 12682-12686 (2009)
30.Huang, Z.-M., Zhang, Y. Z., Kotaki, M., and Ramakrishna, S. "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites," Composites Science and Technology, Vol. 63, No. 15, pp. 2223-2253 (2003)
31.Teo, W. E., and Ramakrishna, S., "A Review on Electrospinning Design and Nanofibre Assemblies," Nanotechnology, Vol. 17, No. 14, pp. R89-R106 (2006)
32.Su, C.-I., Lai, T.-C., Lu, C.-H., Liu, Y.-S., and Wu, S.-P., "Yarn Formation of Nanofibers Prepared Using Electrospinning," Fibers and Polymers, Vol. 14, No. 4, pp. 542-549 (2013)
33. He, J.-H., Wan, Y.-Q., and Yu, J.-Y., "Effect of Concentration on Electrospun Polyacrylonitrile (PAN) Nanofibers," Fibers and Polymers, Vol. 9, No. 2, pp. 140-142 (2008)
34.Greiner, A., and Wendorff, J. H., "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers," Angew Chem Int Ed Engl, Vol. 46, No. 30, pp. 5670-5703 (2007)
35.Jalili, R., Morshed, M., and Ravandi, S. A. H., "Fundamental Parameters Affecting Electrospinning of PAN Nanofibers as Uniaxially Aligned Fibers," Journal of Applied Polymer Science, Vol. 101, pp. 4350-4357 (2006)
36.Kumbar, S. G., James, R., Nukavarapu, S. P., and Laurencin, C. T., "Electrospun Nanofiber Scaffolds: Engineering Soft Tissues," Biomed Mater, Vol. 3, No. 3-034002, pp. 1-15 (2008)
37.Amiraliyan, N., Nouri, M., and Kish, M. H., "Electrospinning of Silk Nanofibers. I. An Investigation of Nanofiber Morphology and Process Optimization Using Response Surface Methodology," Fibers and Polymers, Vol. 10, No. 2, pp. 167-176 (2009)
38.Agarwal, S., Greiner, A., and Wendorff, J. H., "Functional Materials by Electrospinning of Polymers," Progress in Polymer Science, Vol. 38, No. 6, pp. 963-991 (2013)
39.Dabirian, F. and Hosseini, S. A., FIBRES & TEXTILES in Eastern Europe, 17, 45 (2009).
40.Pan, H., Li, L., Hu, L., and Cui, X., "Continuous Aligned Polymer Fibers Produced by A Modified Electrospinning Method," Polymer, Vol. 47, No. 14, pp. 4901-4904 (2006)
41.Wang, X., Zhang, K., Zhu, M., Yu, H., Zhou, Z., Chen, Y., and Hsiao, B. S., "Continuous Polymer Nanofiber Yarns Prepared by Self-Bundling Electrospinning Method," Polymer, Vol. 49, No. 11, pp. 2755-2761 (2008)
42.Dabirian, F., Hosseini Ravandi, S. A., Pishevar, A. R., and Abuzade, R. A., "A Comparative Study of Jet Formation and Nanofiber Alignment in Electrospinning and Electrocentrifugal Spinning Systems," Journal of Electrostatics, Vol. 69, No. 6, pp. 540-546 (2011)
43.Dabirian, F., Hosseini, Y., and Ravandi, S. A. H., "Manipulation of The Electric Field of Electrospinning System to Produce Polyacrylonitrile Nanofiber Yarn," Journal of the Textile Institute, Vol. 98, No. 3, pp. 237-241 (2007)
44.Theron, A., Zussman, E., and Yarin, A. L., "Electrostatic Field-assisted Alignment of Electrospun Nanofibres," Nanotechnology, Vol. 12, pp. 384-390 (2001)
45.Tan, S.-H., Inai, R., Kotaki, M., and Ramakrishna, S., "Systematic Parameter Study for Ultra-Fine Fiber Fabrication via Electrospinning Process," Polymer, Vol. 46, pp. 6128-6134 (2005)
46.Fashandi, H., and Karimi, M., "Characterization of Porosity of Polystyrene Fibers Electrospun at Humid Atmosphere," Thermochimica Acta, Vol. 547, pp. 38-46 (2012)
47.Fashandi, H., and Karimi, M., "Pore Formation in Polystyrene Fiber by Superimposing Temperature and Relative Humidity of Electrospinning Atmosphere," Polymer, Vol. 53, No. 25, pp. 5832-5849 (2012)
48.Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., and Rabolt, J. F., "Controlling Surface Morphology of Electrospun Polystyrene Fibers," Macromolecules, Vol. 37, pp. 573-578 (2004)
49.Zhmayev, E., Cho, D., and Joo, Y. L., "Nanofibers from Gas-Assisted Polymer Melt Electrospinning," Polymer, Vol. 51, No. 18, pp. 4140-4144 (2010)
50.Li, D., and Xia, Y., "Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning," Nano Letters, Vol. 4(5), pp. 933-938 (2004)
51.Patra, S. N., Easteal, A. J., and Bhattacharyya, D., "Parametric Study of Manufacturing Poly(Lactic) Acid Nanofibrous Mat by Electrospinning," Journal of Materials Science, Vol. 44, No. 2, pp. 647-654 (2008)
52.D. Li, Wang, Y., and Xia, Y., "Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films," Advanced Materials, Vol. 16, pp. 361-366 (2004)
53.Li, D., Wang, Y., and Xia, Y., "Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays," Nano Letters, Vol. 3(8), pp. 1167-1171 (2003)
54.Matthews, J. A., Wnek, G. E., Simpson, D. G., and Bowlin, G. L., "Electrospinning of Collagen Nanofibers," Biomacromolecules, Vol. 3(2), pp. 232-238 (2002)
55.Katta, P., Alessandro, M., Ramsier, R. D., and Chase, G. G., "Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector," Nano Letters, Vol. 4(11), 2004, pp. 2215-2218.
56.Teo, W. E., Kotaki, M., Mo, X. M., and Ramakrishna, S., "Porous Tubular Structures with Controlled Fibre Orientation Using A Modified Electrospinning Method," Nanotechnology, Vol. 16, No. 6, pp. 918-924 (2005)
57.Zhou, Z., Liu, K., Lai, C., Zhang, L., Li, J., Hou, H., Reneker, D. H., and Fong, H., "Graphitic Carbon Nanofibers Developed from Bundles of Aligned Electrospun Polyacrylonitrile Nanofibers Containing Phosphoric Acid," Polymer, Vol. 51, No. 11, pp. 2360-2367 (2010)
58.Yan, H., Liu, L., and Zhang, Z., "Continually Fabricating Staple Yarns with Aligned Electrospun Polyacrylonitrile Nanofibers," Materials Letters, Vol. 65, No. 15-16, pp. 2419-2421 (2011)
59.Smit, E., Bűttner, U., and Sanderson, R. D., "Continuous Yarns from Electrospun Fibers," Polymer, Vol. 46, No. 8, pp. 2419-2423(2005)
60.Teo, W.-E., Gopal, R., Ramaseshan, R., Fujihara, K., and Ramakrishna, S., "A Dynamic Liquid Support System for Continuous Electrospun Yarn Fabrication," Polymer, Vol. 48, pp. 3400-3405 (2007)
61.Li, N., Hui, Q., Xue, H., and Xiong, J., "Electrospun Polyacrylonitrile Nanofiber Yarn Prepared by Funnel-Shape Collector," Materials Letters, Vol. 79, pp. 245-247 (2012)
62.Zhang, J. Z., Chen, J. C., and Kirby, E. D., "Surface Roughness Optimization in An End-Milling Operation Using The Taguchi Design Method," Journal of Materials Processing Technology, Vol. 184, No. 1–3, pp. 233-239 (2007)
63.Jeyapaul, R., Shahabudeen, P., and Krishnaiah, K., "Quality Management Research by Considering Multi-Response Problems in The Taguchi Method – A Review," The International Journal of Advanced Manufacturing Technology, Vol. 26, No. 11-12, pp. 1331-1337 (2004)
64.Wu, F.-C., and Chyu, C.-C., "Optimization of Correlated Multiple Quality Characteristics Robust Design Using Principal Component Analysis," Journal of Manufacturing Systems, Vol. 23, No. 2, pp. 134-143 (2004)
65.Pearson, K., "On Lines and Planes of Closest Fit to Systems of Points in Space," Philosophical Magazine, Vol. 2, pp. 559-572 (1910)
66.Abdi, H., and Williams, L. J., "Principal Component Analysis," Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, No. 4, pp. 433-459 (2010)
67.賴文川,牽伸力應用於聚丙烯短纖最佳紡紗牽伸條件之研究,國立台灣科技大學纖維及高分子工程研究所,碩士論文,(2002).
68.劉彥陞,連續式電紡奈米纖維紗線開發製程及其參數設計最佳化研究,國立台灣科技大學材料科學與工程研究所,碩士論文,(2014).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔