|
[1]Lysaght, M.J. and J.A. O’Loughlin, Demographic Scope and Economic Magnitude of Contemporary Organ Replacement Therapies. ASAIO Journal, 2000. 46(5): p. 515-521. [2]The World Medical Market Fact Book. 2008, London: Espicom. [3]Medical Technology in Australia: Key facts and figures. 2014, Sydney: Occasional Paper Series. [4]Lysaght, M.J. and J. Reyes, The growth of tissue engineering. Tissue Eng, 2001. 7(5): p. 485-93. [5]Donaruma, L.G., Definitions in biomaterials, D. F. Williams, Ed., Elsevier, Amsterdam, 1987, 72 pp. Journal of Polymer Science Part C: Polymer Letters, 1988. 26(9): p. 414-414. [6]Ratner, B.D., et al., Biomaterial Science : An Introduction to Materials in Medicine. 3rd ed. 2013, New York: Elsevier. [7]Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971. 5(6): p. 117-141. [8]Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510. [9]Hench, L.L., Bioactive materials: The potential for tissue regeneration. Journal of Biomedical Materials Research, 1998. 41(4): p. 511-518. [10]Hench, L.L., The story of Bioglass. J Mater Sci Mater Med, 2006. 17(11): p. 967-78. [11]Hench, L.L., An Introduction to Bioceramics. 2013, London: Imperial College Press. [12]Li, R., A.E. Clark, and L.L. Hench, An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater, 1991. 2(4): p. 231-9. [13]Vallet-Regi, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108. [14]Shih, S.-J., Y.-J. Chou, and L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass. Ceramics International, 2013. 39(8): p. 8773-8779. [15]Chou, Y.-J., Microstructure and bioactivity correlation of one-step synthesised bioactive glass, in Material Science and Engineering. 2013, National Taiwan University of Science and Technology: Taipei. [16]Liu, Y., J. Lim, and S.H. Teoh, Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv, 2013. 31(5): p. 688-705. [17]Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73. [18]Steele, D.G. and C.A. Bramblett, The Anatomy and Biology of the Human Skeleton. 1988, Texas: Texas A&M University Press. [19]Khan, A.F., et al., Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering: C, 2014. 35(0): p. 245-252. [20]Bhat, S.V., Biomaterials. 2002, Pangbourne: Springer. [21]Murugan, R. and S. Ramakrishna, Development of nanocomposites for bone grafting. Composites Science and Technology, 2005. 65(15–16): p. 2385-2406. [22]Griffith, L.G., Polymeric biomaterials. Acta Materialia, 2000. 48(1): p. 263-277. [23]Agrawal, C.M. and R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res, 2001. 55(2): p. 141-50. [24]Hayashi, T., Biodegradable polymers for biomedical uses. Progress in Polymer Science, 1994. 19(4): p. 663-702. [25]Reis, R.L., et al., Natural-based polymers for biomedical applications. 2008, Cambridge: Woodhead Publishing Limited. [26]Planell, J.A., et al., Bone repair biomaterials. 2009, Cambridge: Woodhead Publishing Limited. [27]Callister, W.D.J., Materials science and engineering: an introduction. 7th ed. 2007, New york: John Wiley & Sons. [28]LeGeros, R. and J. Legeros, Phosphate Minerals in Human Tissues, in Phosphate Minerals, J. Nriagu and P. Moore, Editors. 1984, Springer Berlin Heidelberg. p. 351-385. [29]Hench, L.L. and J. Wilson, An introduction to bioceramics. 1993, Singapore: World Scientific. [30]Gauthier, O., et al., Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci Mater Med, 2001. 12(5): p. 385-90. [31]Bandyopadhyay, A., et al., Calcium Phosphate-Based Resorbable Ceramics: Influence of MgO, ZnO, and SiO2 Dopants. Journal of the American Ceramic Society, 2006. 89(9): p. 2675-2688. [32]Klein, C.P., P. Patka, and W. den Hollander, Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials, 1989. 10(1): p. 59-62. [33]Teoh, S.H., M. Sivaramakrishnan, and R. Thampuran, Tensile and fracture properties of titanium-polymer interpenetrating network composites. Journal of Materials Science Letters, 1996. 15(17): p. 1478-1480. [34]Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543. [35]Hulbert, S.F., et al., History of bioceramics. Ceramics International, 1982. 8(4): p. 131-140. [36]Cao, W. and L.L. Hench, Bioactive materials. Ceramics International, 1996. 22(6): p. 493-507. [37]Bohner, M. and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution? Biomaterials, 2009. 30(12): p. 2175-2179. [38]Kokubo, T., Surface chemistry of bioactive glass-ceramics. Journal of Non-Crystalline Solids, 1990. 120(1–3): p. 138-151. [39]Ohtsuki, C., T. Kokubo, and T. Yamauro, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation. Journal of Materials Science: Materials in Medicine, 1992. 3(2): p. 119-125. [40]Anthony, J.W., et al., "Hydroxylapatite" Handbook of Mineralogy. 4th ed. 2000, Chantilly VA: Mineralogical Society of America. [41]Vallet-Regi, M., C.V. Ragel, and Antonio J. Salinas, Glasses with Medical Applications. European Journal of Inorganic Chemistry, 2003. 2003(6): p. 1029-1042. [42]Valimaki, V.-V. and H. Aro, Molecular basis for action of bioactive glasses as bone graft substitute. Scandinavian journal of surgery, 2006. 95(2): p. 95-102. [43]Al-Noaman, A., et al., Effect of FA addition on bioactivity of bioactive glass coating for titanium dental implant: Part II—Composite coating. Journal of Non-Crystalline Solids, 2013. 364: p. 99-106. [44]Wu, C. and J. Chang, Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2012: p. rsfs20110121. [45]2015 [cited 2015 25th april]; Available from: http://www.sciencedirect.com [46]Ohtsuki, C., T. Kokubo, and T. Yamamuro, Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids, 1992. 143(1): p. 84-92. [47]Huang, W., et al., Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med, 2006. 17(7): p. 583-96. [48]Huang, W., et al., Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B-European Journal of Glass Science and Technology Part B, 2006. 47(6): p. 647-658. [49]Saravanapavan, P., et al., Bioactivity of gel–glass powders in the CaO‐SiO2 system: A comparison with ternary (CaO‐P2P5‐SiO2) and quaternary glasses (SiO2‐CaO‐P2O5‐Na2O). Journal of Biomedical Materials Research Part A, 2003. 66(1): p. 110-119. [50]Ciesla, U. and F. Schuth, Ordered mesoporous materials. Microporous and Mesoporous Materials, 1999. 27(2): p. 131-149. [51]Lopez-Noriega, A., et al., Ordered mesoporous bioactive glasses for bone tissue regeneration. Chemistry of materials, 2006. 18(13): p. 3137-3144. [52]Brinker, C.J., Porous inorganic materials. Current Opinion in Solid State and Materials Science, 1996. 1(6): p. 798-805. [53]Kruk, M., M. Jaroniec, and A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997. 13(23): p. 6267-6273. [54]Yan, X., et al., Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone‐Forming Bioactivities. Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984. [55]Yan, X., et al., Mesoporous bioactive glasses. I. Synthesis and structural characterization. Journal of Non-Crystalline Solids, 2005. 351(40): p. 3209-3217. [56]Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-3403. [57]Arcos, D., et al., Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process. Acta biomaterialia, 2011. 7(7): p. 2952-2959. [58]Li, X., et al., Synthesis and characterization of mesoporous CaO–MO–SiO 2–P 2 O 5 (M= Mg, Zn, Cu) bioactive glasses/composites. Journal of Materials Chemistry, 2008. 18(34): p. 4103-4109. [59]Melo, L.G., et al., Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clinical Oral Implants Research, 2005. 16(6): p. 683-691. [60]Yao, A., et al., In Vitro Bioactive Characteristics of Borate‐Based Glasses with Controllable Degradation Behavior. Journal of the American Ceramic Society, 2007. 90(1): p. 303-306. [61]Fu, Q., et al., Bioactive glass scaffolds with controllable degradation rates for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res. A, 2010. 95: p. 164-171. [62]Jung, S.B. and D.E. Day, Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B-European Journal of Glass Science and Technology Part B, 2009. 50(2): p. 85-88. [63]LeGeros, R., et al., Fluoride-cation interactions in the formation and stability of apatites. Journal of fluorine chemistry, 1988. 41(1): p. 53-64. [64]Okuyama, K., Preparation of micro-controlled particles usingaerosol process. Journal of Aerosol Science, 1991. 22: p. S7-S10. [65]Shih, S.-J. and I.-C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology, 2013. 237: p. 436-441. [66]Clement, C.F. and I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts. Atmospheric Environment, 1999. 33(3): p. 489-499. [67]Mozafari, M., F. Moztarzadeh, and M. Tahriri, Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO 2–CaO–P 2 O 5 glass in simulated body fluid. Journal of Non-Crystalline Solids, 2010. 356(28): p. 1470-1478. [68]ASTM F1635-11 Standard Test Method for in vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants. 2011, ASTM International: West Conshohocken. [69]Othsuki, C., et al., Compositional Dependence of Bioactivity of Glasses in the System CaO-SiO2-P2O5. Journal of Materials Science Materials in Medicine, 1991. 3(2): p. 119-125. [70]Saravanapavan, P. and L.L. Hench, Mesoporous calcium silicate glasses. I. Synthesis. Journal of Non-Crystalline Solids, 2003. 318(1): p. 1-13. [71]Kokubo, T., et al., Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐W3. Journal of Biomedical Materials Research, 1990. 24(6): p. 721-734. [72]Jones, J.R., et al., Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 989-996. [73]Jones, J. and A. Clare, Bio-glasses: an introduction. 2012: John Wiley & Sons. [74]Rey, C., et al., Bioactive ceramics: physical chemistry. Comprehensive Biomaterials, 2011. 1: p. 187-221. [75]Muth, O., C. Schellbach, and M. Froba, Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large poresElectronic supplementary information (ESI) available: TG/DTA/MS data. See http://www. rsc. org/suppdata/cc/b1/b106636f. Chemical Communications, 2001(19): p. 2032-2033. [76]Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726. [77]Lefebvre, L., et al., Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 2007. 55(10): p. 3305-3313. [78]Jedlicka, A.B. and A.G. Clare, Chemical durability of commercial silicate glasses. I. Material characterization. Journal of Non-Crystalline Solids, 2001. 281(1): p. 6-24. [79]O’Donnell, M., et al., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration. Journal of Materials Chemistry, 2010. 20(40): p. 8934-8941. [80]Lin, C.-C., L.-C. Huang, and P. Shen, Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure. Journal of Non-Crystalline Solids, 2005. 351(40): p. 3195-3203. [81]Jensen, S.S., et al. Comparative Study of Biphasic Calcium Phosphates with Different HA/TCP Ratios in Mandibular Bone Defects. Long-Term Histomorphometric Study in Minipigs. in Key Engineering Materials. 2008: Trans Tech Publ. [82]Midura, R.J., et al., Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone, 2007. 41(6): p. 1005-1016. [83]Ryu, H.-S., et al., An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials, 2002. 23(3): p. 909-914. [84]Urban, R.M., et al., Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clinical orthopaedics and related research, 2007. 459: p. 110-117. [85]Tadjoedin, E.S., et al., High concentrations of bioactive glass material (BioGranR) vs. autogenous bone for sinus floor elevation. Clinical Oral Implants Research, 2002. 13(4): p. 428-436. [86]Hamadouche, M., et al., Long‐term in vivo bioactivity and degradability of bulk sol‐gel bioactive glasses. Journal of Biomedical Materials Research, 2001. 54(4): p. 560-566. [87]Lukito, D., J. Xue, and J. Wang, In vitro bioactivity assessment of 70 (wt.)% SiO2–30(wt.)%CaO bioactive glasses in simulated body fluid. Materials Letters, 2005. 59(26): p. 3267-3271.
|