跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 02:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃宏輝
研究生(外文):Hong-huei Huang
論文名稱:自組裝3-(胺丙基)三甲氧基矽烷薄膜合成金奈米晶粒之機制與應用
論文名稱(外文):Mechanism and application of self-assembly 3-aminopropyl-trimethoxysilane thin film induced gold nanoparticles
指導教授:呂正傑
指導教授(外文):Ching-chich Leu
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:118
中文關鍵詞:旋鍍法、自組裝、APTMS、金奈米粒子、high-κ
外文關鍵詞:spin coatingself-assemblyAPTMSgold nanoparticleshigh-κ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以旋鍍法搭配自組裝方式鍍製3-(胺丙基)三甲氧基矽烷(APTMS)薄膜於基板上,並將鍍有APTMS之基板浸入氯金酸及氫氧化鈉的混合溶液中,就可以在APTMS上生成尺寸小(~5nm)且具有高覆蓋密度(~1012cm-2)的金奈米粒子(GNPs)。不同於常見的檸檬酸還原法以及硼氫化鈉還原法,以APTMS自組裝層還原的方式,可以減少還原劑或保護劑的添加,而且反應在室溫下即可進行,同時降低了製程的複雜程度及減緩對環境的傷害。
藉由改變氯金酸水溶液pH值、濃度、浸鍍時間與GNPs離心等各項測試,證實這些粒徑均勻的GNPs主要由APTMS分子所輔助生成。不過,以這種方式所還原的GNPs在元件製程時較無法抵抗後續元件製程中控制氧化層鍍製所形成的強酸環境,因此我們以浸鍍的方式再次組裝APTMS分子於GNPs上,形成三明治結構(Si/Oxide/APTMS/GNPs/APTMS),可達到保護奈米粒子並提高GNPs穩定性的功效。同時,鍍有high-κ材料(HfO2)之Si/HfO2基板製備而成的奈米晶體記憶體電容結構比Si/SiO2基板製備而成之結構在經過APTMS保護後具有更佳的特性,使Si/HfO2/APTMS/GNPs/APTMS結構在電性量測中最高可以承受7V之閘極電壓,最大記憶視窗達到2.8V。
Herein, the multi-layered 3-aminopropyl-trimethoxysilane(APTMS) were spin coated on the substrate by a self-assembly monolayer(SAM) process. And the gold nanoparticles(GNPs) with small size(~5nm) and high coverage density(~1012cm-2) were fabricated by dipping substrates into the mixture of chloroauric acid(HAuCl4) and sodium hydroxide. This process is different from the citrate and the NaBH4 reduction method. The temperature control, reduction agent, and protection agent are needed in those two methods, but not in APTMS thin film induced gold nanoparticles. Thus, the process can be simpler and the influences on environment are reduced.
In the test of pH values, concentrations, dipping times and speed of centrifugations of HAuCl4 solution, we speculated that the GNPs were produced by the assist of APTMS molecules. However, the GNPs on the substrate was easily removed during the chemical-solution deposition of HfO2 due to the strong acid solution. To overcome this problem, the APTMS was further dip coated to cover the GNPs, constructing the Si/Oxide/APTMS/GNPs/APTMS sandwich structure. After the APTMS was dip coated on the GNPs, the stability of GNPs is improved. In this work, the structure constructed on the Si/HfO2(high-κmaterial) substrate shows a better electric property than the structure constructed on Si/SiO2 substrate. And the structure of Si/HfO2/APTMS/GNPs/APTMS can stand 7V of gate sweeping voltage, showing 2.8V of memory window at most.
誌謝 I
目錄 III
表目錄 VII
圖目錄 VIII
摘要 1
英文摘要 3
第一章 緒論 5
1.1. 前言 5
1.2. 研究動機 6
1.3. 論文架構 7
第二章 文獻回顧 11
2.1. 半導體記憶體之簡介 11
2.2. 半導體記憶體種類 11
2.2.1. 揮發性記憶體 11
2.2.2. 非揮發性記憶體 12
2.3. 符合非揮發性記憶體應用之條件 14
2.4. 非揮性記憶體發展 14
2.5. 奈米晶體記憶體的重要發展 16
2.6. 金屬奈米晶體的製備 17
2.6.1. 物理法 17
2.6.2. 化學法 18
2.6.2.1. Turkevich Method 18
2.6.2.2. 醇類還原法 19
2.6.2.3. 硼氫化鈉還原法 19
2.6.2.4. 胺基分子合成奈米粒子 19
2.6.3. 化學還原法之選擇 21
2.7. 自組裝單分子膜 21
2.8. 矽氧烷的簡介 22
2.9. 還原分子之選擇 24
2.9.1. APTMS之特性與應用 25
第三章 實驗方法 35
3.1. 藥品材料 35
3.2. 實驗簡介 36
3.3. 奈米晶粒記憶體製備 37
3.3.1. 矽基板表面清洗 37
3.3.2. 製備穿隧氧化層 38
3.3.2.1. 成長SiO2氧化層 38
3.3.2.2. 鍍製HfO2氧化層 39
3.3.3. 成長SiO2基板之清洗 39
3.3.4. 奈米粒子製備 40
3.3.4.1. APTMS分子還原法 40
3.3.5. 控制氧化層製備 41
3.4. 電極製備 41
3.4.1. 頂電極製備 41
3.4.2. 背電極製備 41
3.5. 試片參數標示 41
3.6. 實驗儀器 42
3.6.1. 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 42
3.6.2. 橢圓偏光儀(Ellipsometer) 42
3.6.3. X光繞射儀(X-ray diffraction, XRD) 43
3.6.4. X-光光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 43
3.6.5. 原子力顯微鏡 (Atomic Force Microscpoic, AFM) 44
3.6.6. 電容-電壓量測(Capacitance-Voltage量測) 45
第四章 結果與討論 52
4.1. APTMS薄膜之組裝特性探討 52
4.2. 金奈米粒子的析出 55
4.2.1. HAuCl4水溶液之酸鹼度變化 55
4.2.2. HAuCl4水溶液之酸鹼度選擇 56
4.2.3. HAuCl4水溶液濃度之影響 57
4.3. 浸鍍時間之影響 58
4.4. 還原機制 58
4.4.1. 金奈米粒子之來源 58
4.4.1.1. HAuCl4水溶液變化之觀察 59
4.4.1.2. 成核過程之探討 60
4.4.2. APTMS之官能基作用 61
4.5. 金奈米粒子之穩定性探討 64
4.6. 奈米晶體記憶體特性探討 67
4.6.1. 以Si/SiO2基板製作的奈米晶體記憶體 68
4.6.2. 以Si/HfO2基板製作的奈米晶體記憶體 69
4.6.3. 閘極電壓對ΔVFB的影響 69
4.6.4. 記憶效應(Memory effect) 70
第五章 結論 94
第六章 參考文獻 96
[1]張立德,張勁燕, “奈米材料”, 22頁, 五南圖書出版社,(2002)
[2]M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal., 115, 301–309 (1989)
[3]曾賢德, ”金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”, 物理雙月刊 32卷 2期 (2010)
[4]W. Guan, S. Long, M. Liu, Q. Liu, Y. Hu, Z. Li, R. Jia, “Modeling of retention characteristics for metal and semiconductor nanocrystal memories”, Solid-State Electronics 51, 806-811(2007)
[5]W. Guan, S. Long, M.Liu, Z. Li, Y. Hu, and Q. Liu, “Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide”, J. Phys. D: Appl. Phys. 40, 2754-2758(2007)
[6]J. Turkevich, P. C. Stevenson, J. Hillier, “Nucleation and Growth Process in the Synthesis of Colloidal Gold”, Discuss. Faraday Soc., 11, 55-75(1951)
[7]H. J. Hah, S. M. Koo, “Preparation of Silver Nanoparticles through Alcohol Reduction with Organoalkoxysilanes”, Journal of Sol-Gel Science and Technology, 26, 467–471 (2003)
[8]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, “Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-liquid System.”, Chem. Soc., Chem. Commun., 801-802 (1994)
[9]S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, G. Kar, “Gold Nanoparticle Formation during Bromoaurate Reduction by Amino Acids”, Langmuir, 21, 5949-5956(2005)
[10]N. Wangoo, K.K. Bhasin, S.K. Mehta, C. Raman Suri, “Synthesis and capping of water dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies”, Journal of Colloid and Interface Science, 323, 247–254(2008)
[11]J. Wang, K. G. Neoh, and E. T. Kang, “Preparation of Nanosized Metallic Particles in Polyaniline”, Journal of Colloid and Interface Science 239, 78–86 (2001)
[12]莊達人, “VLSI製造技術”, 高立圖書有限公司, (1997)
[13]施敏, ”半導體元件物理與製作技術”, 國立交通大學出版社
[14]葉智仁, “ONO薄膜之研究與記憶體應用” ,中原大學碩士論文, (2002)
[15]J. Y. Yang, J. H. Kim, J. S. Lee, S. K. Min , H. J. Kim, K. L. Wang , J. P. Hong, “Electrostatic force microscopy measurements of charge trapping behavior of Au nanoparticles embedded in metal-insulator- semiconductor structure”, Ultramicroscopy, 108, 1215-1219 (2008)
[16]S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe’, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phs. Lett., 68, 1377-1379 (1996)
[17]L.Y. Pan, L. Sun, D. Wu, J. Chen, J. Xu, J. Zhu, “Reverse Programmed SONOS Memory Technique for 0.18 μm Embedded Utilization”, Tsinghua Science and Technology, 12, 741-746(2007)
[18]K. H. Wu, H. C. Chien, T. K. Tsai, J. W. Chang, C. C. Chan, T. S. Chen, C. H. Kao, and C. H. Chien, “Phenomenal SONOS Performance for Next- Generation Flash Memories”, 奈米通訊第十一卷,第三期.
[19]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystalmemories-part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614-1622 (2002)
[20]W. Guan, S. Long, R. Jia, and M. Liu,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007)
[21]J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Trans. Electron Devices 50, 2067-2072 (2003)
[22]K. S. Seol, S. J. Choi, J. Y. Choi, E. J. Jang, B. Ki. Kim, “Pd-nanocrystal-based nonvolatile memory structures with asymmetric SiO2/HfO2 tunnel barrier”, APPLIED PHYSICS LETTERS, 89, 083109 (2006)
[23]T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory”, Materialstoday, 14, 12 (2012)
[24]F. Mafuné, J. Kohno, Y. Takeda. Y, Kondow, T. Sawabe, H, “Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation”, J. Phys. Chem. B, 104, 8333-8337 (2000)
[25]J. Kuyama, H. Inui, S. Imaoka, S. Nasu, K. N. Ishihara and P. H. Shingu, “Nanometer-Sized Crystals Formed by The Mechanical Alloying in the Ag-Fe System.”, Japanese J. App. Phys., 30(5A), L864 (1991)
[26]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication”, IEEE transactions on electron devices, 49, 9 (2002)
[27]H. J. Hah ,S. M. Koo, “Preparation of Silver Nanoparticles through Alcohol Reduction with Organoalkoxysilanes”, Journal of Sol-Gel Science and Technology, 26, 467–471 (2003)
[28]C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, “Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications”, J. Phys. Chem. B, 109, 13857– 13870(2005)
[29]A. R. Tao, S. Habas, P. Yang, “Shape Control of Colloidal Metal Nanocrystals”, Small, 4, 310–325(2008)
[30]Y. N. Tan, J.Y. Lee, D. I. C. Wang, “Uncovering the Design Rules for Peptide Synthesis of Metal Nanoparticles”, J. Am. Chem. Soc., 132, 5677–5686(2010)
[31]吳承軒, “胺基酸輔助奈米粒子合成之新穎製程” ,國立高雄大學碩士論文(2012)
[32]PR. Selvakannan, P. S. Kumar, A. S. More, R. D. Shingte, P. P. Wadgaonkar, M. Sastry, “One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage”, Langmuir, 2004, 20, 295-298.
[33]M. Chen, Y. G. Feng, X. Wang, T. C. Li, J. Y. Zhang, D. J. Qian, “Silver Nanoparticles Capped by Oleylamine: Formation, Growth, and Self-Organization”, Langmuir, 23, 5296-5304(2007)
[34]T. Mishra, R.K. Sahu, S.-H. Lim, L.G. Salamanca-Riba, S. Bhattacharjee, “Hexadecylamine capped silver and gold nanoparticles: Comparative study on formation and self-organization”, Materials Chemistry and Physics, 23, 540-545(2010)
[35]H. Xu, X. Liu, G. Su, B. Zhang, D. Wang, “Electrostatic Repulsion-Controlled Formation of Polydopamine-Gold Janus Particles”, Langmuir, 28, 13060−13065(2012)
[36]A. Das, R. Chadha, N. Maiti, S. Kapoor, “Role of Surfactant in the Formation of Gold Nanoparticles in Aqueous Medium”, Journal of Nanoparticles, vol. 2014, 7pages (2014)
[37]C. Graf, A. V. Blaaderen, “Metallodielectric Colloidal Core−Shell Particles for Photonic Applications”, Langmuir, 18, 524−534 (2002)
[38]Z. Liang, A. Susha and F. Caruso, “Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof”, Chem. Mater, 15, 3176−3183(2003)
[39]P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff and E. W. Kaler, “Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy”, J. Am. Chem. Soc., 122, 9554−9555 (2000)
[40]S. Kubo, Z. Z. Gu, D. A. Tryk, Y. Ohko, O. Sato and A. Fujishima, “Metal-Coated Colloidal Crystal Film as Surface-Enhanced Raman Scattering Substrate”, Langmuir, 18, 5043−5046(2002)
[41]C. Jiang, S. Markutsya, Y. Pikus and V. V. Tsukruk, “ Freely Suspended Nanocomposite Membranes as Highly-Sensitive Sensors”, Nature Materials 3, 721 - 728 (2004)
[42]Z. Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima and O. Sato, “Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and Its Application as a Refractive Index Sensor”, Angewandte Chemie, Volume 114, Issue 7, pp. 1201-1204 (2002)
[43]陳浚豪, “烷基矽烷分子自組裝薄膜系統之製備與鑑定”, 國立東華大學碩士論文 (2005)
[44]A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, American Chemical Society 96, 1533-1554 (1999)
[45]C.J. Brinker, G.W. Scherer, “Sol-Gel Science”,(1992)
[46]董志偉, ”具環氧基矽烷包覆奈米粒子之研究”, 中央大學碩士論文, pp. 6-9( 2001)
[47]S. Bharathi, N. Fishelson and O. Lev, “Direct Synthesis and Characterization of Gold and Other Noble Metal Nanodispersions in Sol-Gel-Derived Organically Modified Silicates”, Langmuir, 15, 1929-1937 (1999)
[48]S. Harish, R. Sabarinathan, James Joseph, K.L.N. Phani, “Role of pH in the synthesis of 3-aminopropyl trimethoxysilane stabilized colloidal gold/silver and their alloy sols and their application to catalysis”, Materials Chemistry and Physics, 127, 203–207 (2008)
[49]D. Niu, Y. Li, W. Dong, W. Zhao, L. Li, J. Shi, “A facile dual templating route to fabricate hierarchically mesostructured materials”, J Mater Sci 44. 6519–6524 (2009)
[50]Y. Yang, M. Hori, T. Hayakawa, M. Nogami, “Self-assembled 3-dimensional arrays of Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities”, Surface Science, 579, 215–224(2005)
[51]Y. Wang , L. Zhu, Y. Zhang, M. Yang, “Silicon nanotips formed by self-assembled Au nanoparticle mask”, J Nanopart Res12, 1821–1828 (2010)
[52]M. Aslam, L. Fu, M. Su, K. Vijayamohanan, V. P. Dravid, “Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles”, J. Mater. Chem., 14, 1795–1797(2004)
[53]J. Sharma, S. Mahima, B. A. Kakade, R. Pasricha, A. B. Mandale, K. Vijayamohanan “Solvent-Assisted One-Pot Synthesis and Self-Assembly of 4-Aminothiophenol-Capped Gold Nanoparticles”, J. Phys. Chem. B, 108, 13280-13286(2004)
[54]W. Stober, A. Fink, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range” ,JOURNAL OF COLLOID AND INTERFACE SCIENCE 26, 62-69 (1968)
[55]T. Yokoi, J. Wakabayashi, Y. Otsuka, W. Fan, M. Iwama, R. Watanabe, K. Aramaki, A. Shimojima, T. Tatsumi, T. Okubo, “Mechanism of Formation of Uniform-Sized Silica NanospheresCatalyzed by Basic Amino Acids”, Chem. Mater, 21 , 3719–3729(2009)
[56]M. A. Snyder, J. A. Lee, T. M. Davis, L. E. Scriven, M. Tsapatsis, “Silica Nanoparticle Crystals and Ordered Coatings Using Lys-Sil and a Novel Coating Device”, Langmuir, 23, 9924-9928(2007)
[57]C. O. Baker, B. Shedd, R. J. Tseng, A. A. Martinez-Morales, C.S. Ozkan, M. Ozkan, Y. Yang, R. B. Kaner, “Size Control of Gold Nanoparticles Grown on Polyaniline Nanofibers for Bistable Memory Devices”, ACS Nano, VOL. 5, NO. 5, 3469–3474(2011)
[58]A.K. Chauhan, D.K. Aswal, S.P. Koiry, S.K. Gupta, J.V. Yakhmi, C. S Űrgers, D. Guerin, S. Lenfant, D. Vuillaume, “Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics”, Appl. Phys. A 90, 581–589 (2008)
[59]S. Wang, K. Qian, X. Bi, W. Weixin. ”Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure and Property of Au Colloids”, J. Phys. Chem. C, 113, 6505−6510(2009)
[60]T. Heim, S. Preuss, B. Gerstmayer, A. Bosio and R. Blossey, “Deposition from a Drop: Morphologies of Unspecifically Bound DNA”, J. Phys.— Condens. Matter, 17, S703–16 (2005)
[61]R. Albrecht, J. Heintz, Biological and Biomaterials Preparation, Imaging, and Characterization Laboratory
[62]J. Wang, K.G. Neoh, E.T. Kang, “Preparation of nanosized metallic particles in polyaniline”, J. Colloid Interface Sci., 239 (1), pp. 78–86(2001)
[63]M. A. Khan, C. Perruchot, S. P. Armes and D. P. Randall, “Synthesis of gold-decorated latexes via conducting polymer redox templates”, J. Mater. Chem., 11, 2363–2372(2011)
[64]R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates”, Science 267, 1629 (1995)
[65]K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, “Preparation and Characterization of Au Colloidal Monolayers”, Anal. Chem. 67, 7359 (1995)
[66]G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, “Colloidal metal films as a substrate for surface-enhanced spectroscopy”, J. Phys. Chem. 99, 9466(1995)
[67]A. Doron, E. Katz, I. Willner, “Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers”, Langmuir 11,13123(1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top