跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/30 21:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煌廸
研究生(外文):Huang-De Lin
論文名稱:自組裝核殼奈米粒子在非揮發性記憶體的應用
論文名稱(外文):Self-assembled core-shell nanoparticles for nonvolatile memory
指導教授:呂正傑
指導教授(外文):Ching-Chich Leu
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:167
中文關鍵詞:奈米晶體記憶體、自組裝、奈米粒子、氧化鉿
外文關鍵詞:Nanocrystal memorySelf-assemblyNanoparticlesHfO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,奈米晶體記憶體元件因為有好的尺寸微縮性、寫入/抹除速度快、低的操作電壓以及良好的電荷保持率,而受到矚目。雖然有這麼多的優點,但其鍍製的方法,以及奈米粒子尺寸大小、分佈狀況以及形狀的控制,仍然是奈米晶體記憶體必須克服的兩項挑戰。在本研究中,我們利用自組裝的方式得到高的奈米粒子覆蓋密度及奈米粒子均勻的分佈,以應用於奈米晶體記憶體。
本論文,利用丙基胺三過氧甲基矽烷(APTMS)自組裝的方式,製備出金和白金奈米晶體記憶體之元件。此種自組裝方式可分為兩個步驟:首先,APTMS會在基板上形成完整的單層分子膜,藉由這層分子膜可以跟奈米粒子之間進行自組裝,接下來再次的進行APTMS自組裝時,就可在奈米粒子上覆蓋一層薄的氧化層而形成核殼結構。最後,我們針對奈米粒子的穩定性以及記憶體電性特性做探討。
本研究所獲致結果如下:(1)APTMS的層數越多時,氨基量也隨之增加,帶正電的氨基量到達一數值後就不會再有所提升,而氨基數量越多,奈米粒子穩定性越好,並有較佳的覆蓋密度,(2) APTMS自組裝方式合成的核殼奈米粒子結構,電性量測證實可以抑制電荷的流失以提升元件的應用性,(3)以更薄穿隧氧化層(2L HfO¬2)下所建構的奈米晶體記憶體有好的特性,電荷儲存量比起較厚(3L HfO¬2)元件更多,且能在更低電壓下進行操作。比起金奈米粒子,白金粒子有更高的功函數、較小的奈米粒子粒徑,和較高的粒子穩定性,故元件可有更好電性表現。
In recent year, Nanocrystal (NCs) memory devices have attracted a great deal of research interest because of their scalability, fast Program/ erase speeds, low operating voltages, and long retention times. With all these advantages, two major challenges still remain for embedded metal NCs: the deposition methods; and size, distribution and shape control. In this study, we employed a self-assembly (SAM) technique to prepare metal NCs with high density and good separation for the application of NCs memory.
In this work, we fabricated gold and platinum NCs memory by SAM of 3-aminopropyltrimethoxysilane (APTMS). Such SAM pocesses can be divided into two steps: The first-run APTMS formed a well-organized monolayer on the substrate which was responsible for the obtained uniform SAM of nanoparticles (NPs). Next, the second-run APTMS formed an APTMS bilayer around the NPs. Finally, We discussed the stability of NPs and the electrical property of NCs memory.
In this work, some results were discussed: (1) the amount of Amino group increases by SAM more APTMS layers. We found out that the positive charged -NH3+ stops increasing when reached a saturate value, leading to better stability and coverage density of NPs. (2)The electrical measurement results indicated the devices can be improved to suppress the property of charge loss by using the APTMS self-assembly core-shell structure. (3) The memory have better characteristic by replacing the thicker tunnel oxide layer(3L HfO2) with the thinner tunnel oxide layer (2L HfO2), and can store more charge and work at a lower voltage.. Compared to gold nanoparticle, platinum nanoparticle, with higher work function, smaller particle size and better particle stability, has superior electrical characteristics.
目錄 I
表目錄 VII
圖目錄 VIII
摘要 1
Abstract 3
第一章 緒論 5
1.1 前言 5
1.2研究動機 6
1.3論文架構 8
第二章 文獻回顧 10
2.1 半導體記憶體簡介 10
2.2 非揮發性記憶體發展 11
2.3 記憶體性能之指標 12
2.3.1 資料保存能力 12
2.3.2 元件耐用性 13
2.3.3 寫入抹除速度及操作電壓 13
2.4 奈米晶體記憶體介紹 13
2.4.1 奈米晶體記憶體發展 13
2.4.2 核殼奈米晶體記憶體之發展 15
2.4.3 多層奈米晶體記憶體 17
2.5 奈米粒子之特性 18
2.6 自組裝分子膜 19
2.7 記憶體結構中絕緣材料之選擇 21
第三章 實驗方法 28
3.1 藥品材料 28
3.2 實驗簡介 30
3.3 核殼奈米晶體記憶體製備流程 30
3.3.1 矽基板表面清洗 30
3.3.2 成長穿隧氧化層 32
3.3.2.1 成長5nm SiO2 32
3.3.2.2 成長5nm HfO2 32
3.3.2.2.1 薄膜鍍製流程 33
3.3.4 奈米粒子製備 33
3.3.5 奈米粒子自組裝 35
3.3.6 核-殼(core-shell)奈米粒子之製備 35
3.3.6.1 核-殼(core-shell)奈米粒子製備 35
3.3.7 多層核-殼(Multilayer of core-shell)奈米晶體記憶體 36
3.3.8 控制氧化層製備 36
3.4 電極製備 36
3.4.1 頂電極製備 36
3.4.2 背電極製備 37
3.5 實驗儀器 37
3.5.1 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical Electron Microscope,HR-AEM) 37
3.5.2 紫外-可見光吸收光譜儀 (UV-Vis Spectrometer) 38
3.5.3 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 38
3.5.4 X-光光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 39
3.5.5 原子力顯微鏡 (Atomic Force Microscpoic, AFM) 40
3.5.6 電容-電壓量測 (Capacitance-Voltage量測) 40
第四章 結果與討論 51
4.1.1 氧化矽基板上自組裝APTMS 51
4.1.1.1 APTMS自組裝層數對金奈米粒子的熱穩定性影響[10] 51
4.1.1.2 不同APTMS自組裝層數之XPS分析 53
4.1.1.3 不同APTMS層數之AFM分析 53
4.1.2 氧化鉿基板上自組裝APTMS 54
4.1.2.1 APTMS自組裝層數對金奈米粒子熱穩定性的影響[10] 54
4.1.2.2 不同APTMS自組裝層數之XPS分析 55
4.1.2.3 不同APTMS層數之AFM分析 56
4.1.3 比較不同基板對APTMS自組裝的影響 56
4.2.1 核-殼(core-shell)奈米粒子自組裝 57
4.2.1.1 SiO2基板上的APTMS覆蓋層數對金奈米粒子之熱穩定影響[10] 58
4.2.2.1 HfO2基板上的APTMS之覆蓋層數對金奈米粒子之熱穩定影響[10] 59
4.2.2.2 HfO2基板上不同覆蓋APTMS層數之XPS分析 60
4.2.3.1 HfO2基板上的APTMS之覆蓋層數對白金奈米粒子之熱穩定影響 62
4.2.3.2 HfO2基板上不同覆蓋APTMS層數之XPS分析 62
4.3 奈米晶體記憶體特性分析 64
4.3.1 Si/ SiO2/ 4L APTMS/ Au NPs/ HfO2結構的奈米晶體記憶體 64
4.3.1.1 Si/ SiO2/ 4L APTMS/ Au NPs/ HfO2結構的奈米晶體記憶體 64
4.3.2 Si/ 3L HfO2/ XL APTMS/ Au NPs/ HfO2結構的奈米晶體記憶體 65
4.3.2.1記憶效應(Memory effect) [10] 66
4.3.2.2閘極電壓對ΔVFB的影響[10] 67
4.3.3 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ XL APTMS/ HfO2結構的奈米晶體記憶體特性 68
4.3.3.1記憶效應(Memory effect) [10] 69
4.3.3.2閘極電壓對ΔVFB的影響[10] 70
4.3.3.3電荷保持力(Retention)特性分析[10] 71
4.3.4 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構的奈米晶體記憶體特性 72
4.3.4.1記憶效應(Memory effect) [10] 72
4.3.4.2閘極電壓對ΔVFB的影響[10] 73
4.3.4.3電荷保持力(Retention)特性分析[10] 73
4.3.5 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構的奈米晶體記憶體特性[10] 74
4.3.5.1 C-V曲線的記憶效應(Memory effect) [10] 75
4.3.5.2閘極電壓對ΔVFB的影響[10] 75
4.3.5.3電荷保持力(Retention)特性分析[10] 76
4.3.6 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構的奈米晶體記憶體特性 76
4.3.6.1記憶效應(Memory effect) 77
4.3.6.2閘極電壓對ΔVFB的影響 78
4.3.6.3電荷保持力(Retention)特性分析 78
4.3.7 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構的奈米晶體記憶體特性 79
4.3.7.1 C-V曲線的記憶效應(Memory effect) 79
4.3.7.2閘極電壓對ΔVFB的影響 80
4.3.7.3電荷保持力(Retention)特性分析 80
第五章 結論 142
第六章 參考文獻 144






表目錄

表2-1奈米晶體記憶體發展歷史表[10] 22
表4-1 Si/SiO2/ XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS自組裝層數 82
表4-2 Si/HfO2/XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS自組裝層數 83
表4-3 Si/HfO2/4L APYMS/Au NPs/XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS覆蓋層數 84
表4-4 Si/ Ti/ Au film/ XL APTMS之XPS圖,N 1s訊號積分強度,X為APTMS覆蓋層數 85
表4- 5 Si/HfO2/4LAPYMS/Pt NPs/XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS覆蓋層數 86
表4- 6 Si/ Ti/ Pt film/ XL APTMS之XPS圖,N 1s訊號積分強度,X為APTMS覆蓋層數 87
表4- 7以3L HfO2穿隧氧化層之金與白金奈米晶體記憶體電性比[10] 88
表4- 8以2L HfO2穿隧氧化層之白金奈米晶體記憶體電性比較 89
表4-9不同穿隧氧化層之白金奈米晶體記憶體電性比較 90







圖目錄

圖1- 1浮點記憶體的結構與能帶示意圖 9
圖1-2奈米晶體記憶體的結構與能帶示意 9
圖2-1浮動閘極元件 23
圖2-2捕捉電荷元件 23
圖2-3典型記憶體元件之耐用性測試示意圖[16] 24
圖2-4電子寫入後電容-電壓曲線圖 25
圖2- 5 APTMS結構示意圖[41] 25
圖2-6多層金-二氧化矽核-殼奈米粒子之製程步驟[45] 26
圖2- 7自組裝金奈米粒子輔助RIE蝕刻Silicon nanotips圖案化[46] 27
圖3-1奈米晶體記憶體元件示意圖[10] 42
圖3-2核-殼奈米晶體記憶體元件示意圖[10] 42
圖3-3多層的核-殼奈米晶體記憶體之示意圖[10] 43
圖3-4 HfO2溶液製備流程 44
圖3-5烘烤(Baking)流程 44
圖3-6金奈米粒子的(a) 溶液照片、 (a) UV-vis圖譜、(b) TE Mode圖、(c) 粒子分佈圖。 45
圖3- 7 白金奈米粒子的(a) 溶液照片、(b) TE Mode圖、(C) 粒子分佈圖。 46
圖3-8 奈米粒子自組裝之示意圖,(a)SiO2基板和(b)HfO2基板。 47
圖3-9奈米粒子自組裝流程圖 48
圖3-10核-殼奈米粒子自組裝之示意圖,(a)SiO2基板和(b)HfO2基板 49
圖4-1 Si/ SiO2/ 1L APTMS/ Au NPs 結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 91
圖4-2 Si/ SiO2/ 2L APTMS/ Au NPs 結構在氧氣氛下,經 (a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 92
圖4-3 Si/ SiO2/ 4L APTMS/ Au NPs 結構在氧氣氛下,經 (a) 400℃、(b)500℃、(c)600℃、(d)700℃ ,熱處理1hr 的SEM圖[10]。 93
圖4-4 不同熱處理溫度對Si/ SiO2/ XL APTMS/ Au NPs 結構之奈米粒子覆蓋密度與粒徑之影響[10]。 94
圖4-5 Si/SiO2/XL APTMS 之XPS圖(a) N 1s, (b) O 1s,X為APTMS自組裝層數 95
圖4-6 Si/SiO2/ XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS自組裝層數 95
圖4-7 Si/SiO2/ XL APTMS 之3D AFM表面形貌圖(a) x=0, (b) x=1, (c) x=2, (d) x=4,X為APTMS自組裝層數 96
圖4-8 Si/SiO2基板上平均粗糙度與不同自組裝層數之APTMS薄膜關係,X為APTMS自組裝層數 96
圖4-9 Si/ 3L HfO2/ 1L APTMS/ Au NPs 結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 97
圖4-10 Si/ 3L HfO2/ 2L APTMS/ Au NPs 結構在氧氣氛下,經 (a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 98
圖4-11 Si/ 3L HfO2/ 4L APTMS/ Au NPs 結構在氧氣氛下,經 (a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 99
圖4-12 不同熱處理溫度對Si/ 3L HfO2/ XL APTMS/ Au NPs 結構之奈米粒子覆蓋密度與粒徑之影響[10]。 100
圖4-13 Si/ HfO2/XL APTMS 之XPS圖(a) N 1s, (b) O 1s, (c) Si 2p,X為APTMS自組裝層數 101
圖4-14 Si/ HfO2/XL APTMS之XPS圖N 1s訊號積分強度,X為APTMS自組裝層數 101
圖4-15 Si/ HfO2/ XL APTMS之AFM圖,X=(a) 0層, (b )一層,(c)二層,(d)三層,(e)四層,X為APTMS自組裝層數。 102
圖4-16 Si/ HfO2基板上平均粗糙度與不同層數之APTMS薄膜關係,X為APTMS自組裝層數 102
圖4-17 Si/ SiO2/ 4L APTMS/ Au NPs/ 1L APTMS結構在氧氣氛下經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 103
圖4-18 Si/ SiO2/ 4L APTMS/ Au NPs/ 2L APTMS結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 104
圖4-19 Si/ SiO2/ 4L APTMS/ Au NPs/ 4L APTMS結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 105
圖4-20 不同熱處理溫度對Si/ SiO2/ 4L APTMS/ Au NPs/ XL APTMS結構之奈米粒子覆蓋密度與粒徑之影響[10]。 106
圖4-21 Si/ HfO2/ 4L APTMS/ Au NPs/ 1L APTMS結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 107
圖4-22 Si/ HfO2/ 4L APTMS/ Au NPs/ 2L APTMS結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 108
圖4-23 Si/ HfO2/ 4L APTMS/ Au NPs/ 4L APTMS結構在氧氣氛下,經(a) 400℃、(b)500℃、(c)600℃、(d)700℃,熱處理1hr的SEM圖[10]。 109
圖4-24不同熱處理溫度對Si/ HfO2/ 4L APTMS/ Au NPs/ XL APTMS結構之奈米粒子覆蓋密度與粒徑之影響[10]。 110
圖4-25 Si/ HfO2/ 4L APTMS/ Au NPs/ XL APTMS之XPS圖,(a) N1s、(b)O1s、(c)Si2p ,X為APTMS覆蓋層數[10] 111
圖4-26 Si/ HfO2/ 4L APTMS/ Au NPs/ XL APTMS之XPS圖,N 1s訊號積分強,X為APTMS覆蓋層數 111
圖4-27 Si/ Ti/ Au film/ XL APTMS之(a) XPS圖,(b) N 1s訊號積分強度,X為APTMS覆蓋層數 112
圖4-28 Si/ Ti/ Au film/ XL APTMS之(a) XPS圖,(b) Si 2p訊號積分強度,X為APTMS覆蓋層數 112
圖4-29 Si/ SiO2/ HfO2/ XL APTMS之XPS圖,(a)N1s、(b)Si2p,X為APTMS覆蓋層數 113
圖4-30 Si/ SiO2/HfO2/XL APTMS之XPS圖,(a) N 1s訊號積分強度,(b) NH3+積分強度,(c) NH2積分強度,X為APTMS覆蓋層數 114
圖4-31 Si/ HfO2/ 4L APTMS/ Pt NPs / XL APTMS/結構,經氧氣氛400℃熱處理1小時之SEM圖(倍率 200K),X=(a) 0層、(b) 1層、(c) 2層、(d) 4層,以及(e)覆蓋密度與粒徑變化之關係。 115
圖4-32 Si/ HfO2/ 4L APTMS/ Pt NPs/ XL APTMS之XPS圖,(a) N1s、(b) O1s、(c)Si2p,X為APTMS覆蓋層數 116
圖4-33 Si/ HfO2/ 4L APTMS/ Pt NPs/ XL APTMS之XPS圖,N 1s訊號積分強度,X為APTMS覆蓋層數 116
圖4-34 Si/ Ti/ Pt film/ XL APTMS之(a) XPS圖,(b) N 1s訊號積分強度,X為APTMS覆蓋層數 117
圖4-35 Si/ Ti/ Pt film/ XL APTMS之(a)XPS圖,(b )Si 2p訊號積分強度,X為APTMS覆蓋層數 117
圖4-36 Si/ SiO2/ XL APTMS/ Au NPs/ HfO2結構之C-V曲線 118
圖4-37 Si/3L HfO2/ 1L APTMS/ Au NPs/ HfO2之TEM結構圖 119
圖4-38 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ HfO2之TEM結構圖 120
圖4-39 Si/ 3L HfO2/ XL APTMS/ Au NPs/ HfO2結構之(a)C-V曲線,(b) 平帶電壓隨閘極電壓變化[10] 121
圖4-40 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ 1L APTMS/HfO2之TEM結構圖 122
圖4-41 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ 2L APTMS/HfO2之TEM結構圖 123
圖4-42 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ 4L APTMS/HfO2之TEM結構圖 124
圖4-43 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ XL APTMS/ HfO2結構之(a)C-V曲線,(b) 平帶電壓隨閘極電壓變化,X為APTMS覆蓋層數[10] 125
圖4-44 Si/ 3L HfO2/ 4L APTMS/ Au NPs/ XL APTMS/ HfO2結構之電荷保持力比較圖,X為APTMS覆蓋層數[10] 126
圖4-45 Si/3L HfO2/ 4L APTMS/ Pt NPs//HfO2之TEM結構圖 127
圖4-46 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 1L APTMS/HfO2之TEM結構圖 128
圖4-47 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/HfO2之TEM結構圖 129
圖4-48 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 4L APTMS/HfO2之TEM結構圖 130
圖4-49 Si/3L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構(a)C-V曲線,(b) 平帶電壓隨閘極電壓變化,X為APTMS覆蓋層數[10] 131
圖4-50 Si/3L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構之電荷保持力比較圖,X為APTMS覆蓋層數[10] 132
圖4-51 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2 / 4L APTMS/ Pt NPs/ 2L APTMS / HfO2之TEM結構圖 133
圖4-52 Si/3L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2 / 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構之(a)C-V曲線,(b) 平帶電壓隨閘極電壓變化[10] 134
圖4-53 Si/ 3L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2 / 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構之(a)記憶視窗隨閘極電壓變化,(b) 電荷保持力比較圖[10] 135
圖4-54 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構之C-V曲線,X為APTMS覆蓋層數 136
圖4-55 Si/ 2L HfO2/ 4L APTMS/ Au NPs/ XL APTMS/ HfO2結構之C-V曲線,X為APTMS覆蓋層數 137
圖4-56 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構有之平帶電壓隨閘極電壓變化圖,X為APTMS覆蓋層數 138
圖4-57 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ XL APTMS/ HfO2結構之電荷保持力比較圖,X為APTMS覆蓋層數 139
圖4-58 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2 / 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構之(a)C-V曲線,(b) 平帶電壓隨閘極電壓變化 140
圖4-59 Si/ 2L HfO2/ 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2 / 4L APTMS/ Pt NPs/ 2L APTMS/ HfO2結構之(a)記憶視窗隨閘極電壓變化,(b) 電荷保持力比較圖 141
[1]Richard P. Feynman, There's Plenty of Room at the Bottom An Invitation to Enter a New Field of Physics (2002).
[2] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe’, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phs. Lett., 68,1377-1379 (1996).
[3] J. Dufourcq, S. Bodnar, G. Gay, D. Lafond, P. Mur, G. Molas, J. P.Nieto, L. Vandroux, L. Jodin, F. Gustavo, Th. Baron, “High density platinum nanocrystals for non-volatile memory applications”, Appl. Phys. Lett. 92, 073102 (2008).
[4] J. Y. Yang, J. H. Kim, J. S. Lee, S. K. Min , H. J. Kim, K. L. Wang , J. P. Hong, “Electrostatic force microscopy measurements of charge trapping behavior of Au nanoparticles embedded in metal-insulator- semiconductor structure”, Ultramicroscopy, 108, 1215-1219 (2008).
[5] W. Guan, S. Long, M.Liu, Z. Li, Y. Hu, and Q. Liu, “Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide”, J. Phys. D: Appl. Phys. 40, 2754-2758 (2007).
[6] W. Guan, S. Long, M. Liu, Q. Liu, Y. Hu, Z. Li, R. Jia, “Modeling of retention characteristics for metal and semiconductor nanocrystal memories”, Solid-State Electronics 51, 806-811 (2007).
[7] Q. Wang, Z. T. Song, W. L. Liu, C. L. Lin, T. H. Wang, “Synthesis and electron storage characteristics of isolated silver nanodots on/embedded in Al2O3 gate dielectric”, Applied Surface Science, 230, 8-11 (2004).
[8] W. Guan, S. Long, R. Jia, and M. Liu,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007).
[9] C. Sargentisa, K. Giannakopoulos, A. Travlos, P. Normand, D. Tsamakis, “Study of charge storage characteristics of memory devices embedded with metallic nanoparticles”, Superlattices and Microstructures, 44, 483-488 (2008).
[10] 黃聖夫, “烷基矽烷輔助奈米粒子組裝在奈米晶體記憶體的應用”, 國立高雄大學碩士論文(2013)
[11] 張立德, 張勁燕,“奈米材料”,五南圖書出版社, 22頁(2002).
[12] 莊達人, “VLSI製造技術”, 高立圖書有限公司, (1997)
[13] D. Kahng and S. M. Sze, J. of Bell syst. Tech., vol. 46, p.1288, 1967.
[14] K. H. Wu, H. C. Chien, T. K. Tsai, J. W. Chang, C. C. Chan, Tung-Sheng Chen, Chin-Hsing Kao, and Chao-Hsin Chien,“Phenomenal SONOS Performance for Next- Generation Flash Memories”, 奈米通訊地十一卷,第三期.
[15] Sandip Tiwari, “A silicon nanocrystals based memory,” Applied
Physics Letters,vol. 68, p. 1377, 1996.
[16] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,” Introduction
to flash memory”, Proceedings of The IEEE, Vol. 91, pp. 489-502,
2003
[17] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin,” Failure mechanisms of flash cell in program/erase cycling”, Technical Digest-International Electron Devices Meeting, pp. 291-294, 1994.
[18] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystalmemories-part Ⅰ: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606-1613 (2002).
[19] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystalmemories-part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614-1622 (2002).
[20] W. Guan, S. Long, R. Jia, and M. Liu,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007).
[21] J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Trans. Electron Devices 50, 2067-2072 (2003).
[22] J. Yi. Tseng, C. W. Cheng, S. Yu. Wang, T. B. Wu, K. Y. Hsieh, “Memory characteristics of Pt nanocrystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures”, APPLIED PHYSICS LETTERS, VOLUME 85, NUMBER 13 (2004).
[23] K. S. Seol, S. J. Choi, J. Y. Choi, E. J. Jang, B. Ki. Kim, “Pd-nanocrystal-based nonvolatile memory structures with asymmetric SiO2/HfO2 tunnel barrier”, APPLIED PHYSICS LETTERS 89, 083109 (2006).
[24] J. Dufourcq, S. Bodnar, G. Gay, D. Lafond, P. Mur,“High density platinum nanocrystals for non-volatile memory applications”, APPLIED PHYSICS LETTERS 92, 073102 (2008).
[25] J. S. Lee, J. Y. Yang, and J. P. Hong, “Charge trap memory characteristics of AlOx shell-Al core nanoparticles embedded in HfO2 gate oxide matrix”, APPLIED PHYSICS LETTERS 95, 052109 (2009).
[26] H. Zhou, J. A. Dorman, Y. C. Perng, S. Gachot, J. G. Zheng, “Memory characteristics of ordered Co/Al2O3 core-shell nanocrystal arrays assembled by diblock copolymer process”, APPLIED PHYSICS LETTERS 98, 192107 (2011).
[27] C. C. Leu, S. T. Chen, F. K. Liu and C. X. Wu, “Improved performance of nanocrystal memory for minosilane-mediated u–SiO2 embedded core–shell nanoparticles”, J. Mater. Chem., 22, 24959-24959 (2012).
[28] Z. Xu, C. Zhu, Z. Huo, Y. Cui, Y. Wang, “Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix”, APPLIED PHYSICS LETTERS 100, 203509 (2012).
[29] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, “Developments in nanocrystal memory”, materialstoday, VOLUME 14, NUMBER 12 (2012)
[30] T. Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias, “Multilevel charge storage in silicon nanocrystal multilayers” , Appl. Phys. Lett. 87, 202110 (2005).
[31] B. Ramalingam, H. Zheng, S. Gangopadhyay “Layer-by-layer charging in non-volatile memory devices using embedded sub-2nm platinum nanoparticles” 104, 143103 (2014)
[32] J. Dufourcq et al, “High density platinum nanocrystals for non-volatile memory applications,” Applied Physics Letters, vol. 92, pp. 073102, 2008.
[33]J. J. Lee, Dim-Lee Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention,” IEEE Transaction on Electron Devices,vol.52, pp.507-511, 2005.
[34] S. Maikap et al, “Physical and electrical characteristics of atomic layer deposited TiN nanocrystal memory capacitors,” Applied Physics Letters, vol. 91, pp. 043114,2007.
[35] C. Graf, A. V. Blaaderen, “Metallodielectric Colloidal Core−Shell Particles for Photonic Applications”, Langmuir, 18, 524−534 (2002)
[36] Z. Liang, A. Susha and F. Caruso, “Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof”, Chem. Mater, 15, 3176−3183(2003)
[37] C. Jiang, S. Markutsya, Y. Pikus and V. V. Tsukruk, “ Freely Suspended Nanocomposite Membranes as Highly-Sensitive Sensors”, Nature Materials 3, 721 - 728 (2004)
[38] Z. Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima and O. Sato, “Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and Its Application as a Refractive Index Sensor”, Angewandte Chemie, Volume 114, Issue 7, pp. 1201-1204 (2002)
[39] P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff and E. W. Kaler, “Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy”, J. Am. Chem. Soc., 122, 9554−9555 (2000))
[40] S. Kubo, Z. Z. Gu, D. A. Tryk, Y. Ohko, O. Sato and A. Fujishima, “Metal-Coated Colloidal Crystal Film as Surface-Enhanced Raman Scattering Substrate”, Langmuir, 18, 5043−5046(2002)
[41] 陳浚豪, “烷基矽烷分子自組裝薄膜系統之製備與鑑定”, 國立東華大學碩士論文(2005)
[42] S. Bharathi, N. Fishelson and O. Lev, “Direct Synthesis and Characterization of Gold and Other Noble Metal Nanodispersions in Sol-Gel-Derived Organically Modified Silicates”, Langmuir, 15, 1929-1937 (1999)
[43] S. Harish, R. Sabarinathan, James Joseph, K.L.N. Phani, “Role of pH in the synthesis of 3-aminopropyl trimethoxysilane stabilized colloidal gold/silver and their alloy sols and their application to catalysis”, Materials Chemistry and Physics, 127, 203–207 (2008)
[44] D. Niu, Y. Li, W. Dong, W. Zhao, L. Li, J. Shi, “A facile dual templating route to fabricate hierarchically mesostructured materials”, J Mater Sci 44. 6519–6524 (2009)
[45] Y. Yang, M. Hori, T. Hayakawa, M. Nogami, “Self-assembled 3-dimensional arrays of Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities”, Surface Science, 579, 215–224(2005)
[46] Y. Wang , L. Zhu, Y. Zhang, M. Yang, “Silicon nanotips formed by self-assembled Au nanoparticle mask”, J Nanopart Res12, 1821–1828 (2010)
[47] M. She,“Semiconductor Flash Memory Scaling”, University of California, Berkeley, 2003.
[48] C. Sargentisa, K. Giannakopoulos, A. Travlos, P. Normand, D. Tsamakis, “Study of charge storage characteristics of memory devices embedded with
[49] W. Guan, S. Long, R. Jia, and M. Liu,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111 (2007).
[50] Q. Wang, Z. T. Song, W. L. Liu, C. L. Lin, T. H. Wang, “Synthesis and electron storage characteristics of isolated silver nanodots on/embedded in Al2O3 gate dielectric”, Applied Surface Science, 230, 8-11 (2004).
[51] J. C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics”, IEEE EDS vanguard series of independent short courses.
[52] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and D. L. Kwong, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” Tech. Dig.-Int. Electron Devices Meet., 1999, 133 (1999).
[53] M. Balog, M. Schieber, M. Michiman, and S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds”, Thin Solid Films 41, 247 (1977).
[54] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon”, J. Mater. Res., 11, 2757-2774 (1996).
[55]A. Fazio, “Flash Memory Scaling”, MRS BULLETIN/NOVEMBER (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊