跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林承毅
研究生(外文):Cheng-yi Lin
論文名稱:固溶化及退火熱處理對13Cr2Ni2Mo不銹鋼顯微組織之影響
論文名稱(外文):Effect of solid solution and annealing on microstructure of 13Cr2Ni2Mo stainless steel
指導教授:林東毅林東毅引用關係
指導教授(外文):Dong-yih Lin
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:109
中文關鍵詞:13Cr2Mo2Ni不銹鋼固溶化熱處理退火熱處理M23C6M23(C.B)6Laves phase
外文關鍵詞:13Cr2Mo2NiStainless Steelsolid solution heat treatmentannealing heat treatmentM23C6M23(C.B)6Laves phase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製之新型不銹鋼13Cr2Mo2Ni,欲將此材料應用螺絲製造業,針對其組織與硬度分析,研究適合加工的熱處理參數。
本實驗分為兩個部分,第一部分為固溶化熱處理,此階段顯微組織主要為基地相的麻田散鐵,以及δ肥粒鐵相,在1100℃持溫時間30分鐘內時,仍有富硼富鉬相未固溶回基地中;在1100℃~1200℃,固溶化溫度中,δ肥粒鐵相分率和固溶化溫度與持溫時間均呈現正相關,而肥粒鐵的比例則和硬度呈負相關。
第二部分,欲將不銹鋼軟化,施以640℃~790℃溫度的退火熱處理,發現在690℃以上時有M23C6與M23(C,B)6析出,當退火溫度740℃以上時在δ肥粒鐵相晶界處有Laves phase析出;除此之外在退火溫度740℃以上時來到了(α+γ)雙相區中,γ相和退火溫度與持溫時間呈現正相關,而γ相冷卻後形成麻田散鐵,使硬度提升,所以欲將13Cr2Ni2Mo不銹鋼退火軟化,應避免退火溫度超過(α+γ)雙相區溫度。
This study is focused on a 13Cr2Ni2Mo stainless steel use as screws manufacturing. We want to find the best heat treatment parameters for manufacturing, by analysising it’s microstructure and hardness.
The first part of my experiment is solid solution heat treatment.In this stage,the microstructure is martensite as a base phase with some δ ferrite phase. When temperature of solid solution heat treatment is 1100 ℃,and temperature holding time is less than 30 minutes, there is still B-rich Mo-rich phase undissolved back to base; The fraction of δ ferrite phases are positive related with temperature and holding time, but the fraction of the ferrite is negative related with hardness in 1100℃~ 1200℃.
The second part, we want to soften the stainless steel. So we anneal it by 640 ℃ ~ 790 ℃.We found that when annealing temperature higher than 690℃,there are M23C6 and M23 (C,B)6 precipitated.When temperature higher than 740℃,Laves phase is precipitated on δ ferrite grain boundaries. When the annealing temperature above 740 ℃ ,it comes to the (α + γ) two-phase region. γ phase is positive related with the annealing temperature and the annealing holding time. The γ-phase transform to martensite at room temperature, and martensite make hardness upgrade. So, to soften 13Cr2Ni2Mo stainless steel should avoid the annealing temperature exceeds (α + γ) two-phase zone.
謝誌 I
目錄 II
表目錄 IV
圖目錄 VI
中文摘要 1
英文摘要 2
第一章 前言 3
第二章 文獻回顧 5
2.1麻田散鐵不銹鋼特性及衍生族系 5
2.2麻田散鐵相轉變 7
2.3合金成份的影響 8
2.4鎳、鉻當量與相圖的關係 11
2.5晶粒尺寸與機械性質關係 15
2.6固溶化熱處理與δ肥粒鐵相的影響 16
2.7 SMSS中逆變沃斯田鐵的影響 19
2.8碳化物種類與退火溫度的關係 21
2.9 Laves phase 25
第三章 實驗方法 27
3.1試片製備 27
3.2固溶化熱處理 29
3.3退火熱處理 29
3.4金相觀察 30
3.5相分率計算 31
3.6磁性測量 31
3.7 SEM觀察和EDS微成分分析 32
3.8 XRD分析 34
3.9硬度分析 35
第四章結果與討論 39
4.1固溶化處理對顯微組織與機械性質之關係 39
4.2固溶化處理溫度/時間對硬度之影響 53
4.3退火熱處理與析出相之關係 60
4.4退火熱處理與硬度之關係 83
第五章 結論 90
參考文獻 92
[1] 陳炫霖,“組成元素對Fe-Cr-Mn 含氮不銹鋼沃斯田鐵化、麻田散鐵相轉變與腐蝕性質之作用研究”, 碩士論文, 逢甲大學,台中市, 台灣 (2000)。
[2] 王繼敏,“不銹鋼與金屬腐蝕”,第1-60頁,科技圖書,台北市,台灣 (1990)。
[3] H. Zhenga, X.N. Ye and J.D. Li ,“Effect of carbon content on microstructure and mechanical properties of ot-rolled low carbon 12Cr–Ni stainless steel”, Materials Science and Engineering A, 527, 7407-7412 (2010).
[4] R.W.K. Honeycombe: Steels Microstructure and Properties, 陳皇鈞 譯, 第273-303頁, 全華科技圖書, 台中市, 台灣 (1986).
[5] D.D. Shena, S.H. Songb, Z.X. Yuana and L.Q. Weng, “Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr–Mo low-alloy steel”, Materials Science and Engineering A, 394, 53-59 (2005)
[6]王斌, 票卓新, 李國棟, “超級馬氏體不銹鋼銲接的研究發展” ,新技術工藝熱加工工藝技術與材料研究, 5, 57-61 (2008)。
[7]M.L.G. Byrnes, M. Grujicic and W.S.Owen,“Nitrogen strengthening of a stable austenitic stainless steel”, Acta Metallurgica, 35, 1853-1862 (1987).
[8]E. Werner,“Solid solution and grain size hardening of nitrogen alloyed austenitic steels”,Materials Science and Engineering A, 101, 93-98 (1988).
[9] M. Sakakibara and T. Matsui,“Development of high-strength martensitic stainless steel YUS 550 for architectural use”, Nippon Steel Technical Report, 71, 55-63 (1996).
[10] D. Thibault, P. Bocher and M. Thomas, “Residual stress and microstructure in welds of 13% Cr–4% Ni martensitic stainless steel”, Journal of Materials Processing Technology, 209, 2195-2202 (2009).
[11] A.L. Schaeffler, “Welding dissimilar metals with stainless electrodes”, Iron Age, 162, 72-79 (1948).
[12] D.L. Olson, “Prediction of Austenitic Weld Metal Microstructure and Properties”, Welding Research Supplement, 64, 281-295 (1985).
[13] C.J. Long and W.T. DeLong, “The ferrite content of austenitic stainless steel weld metal”, Welding Journal, 52, 281-297 (1973).
[14] 趙艳君, 孟慶雪, 任學平, 陳錫璋, 冀紅彥, “影響新型低碳馬氏體合金鋼奧氏體晶粒的因素”, 塑性工程學報, 17, 140-145 (2010)。
[15] Y.R. Liu, Y. Dong and Q.L. Yong ,“Effect of Heat Treatment on Microstructure and Property of Cr13 Super Martensitic Stainless Steel”, Journal of Iron and Steel Research, 18, 60-55 (2011).
[16] X.P. Ma, L.J. Wang , B. Qin, C.M. Liu and S.V. Subramanian, “Effect of N on microstructure and mechanical properties of 16Cr5Ni1Mo martensitic stainless steel”, Materials and Design, 34, 74-81 (2012).
[17] P. Wang, S.P. Lu and N.M. Xiao, “Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel”, Materials Science and Engineering A, 527, 3210-3216 (2010).
[18] D. Zou, H. Ying and W. Zhang, “Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel”, Journal of Iron and Steel Research, 17, 50-54 (2010).
[19] D.S. Leem, Y.D. Lee and J.H. Jun, “Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel”, Scripta Materialia, 45, 767-772 (2001).
[20] S.J. Lee, Y.M. Park and Y.K. Lee , “Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy”, Materials Science and Engineering A, 515, 32-37 (2009).
[21] Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W.Jin and C.S. Choi, “Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-1 3Cr-7Ni (wt-%) martensitic stainless steel”, Materials Science and Technology, 19, 393-398 (2003).
[22] P.D. Bilmes, M. Solari and C.L. Llorente , “Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals”, Materials Characterization, 46, 285-296 (2001).
[23] 蔡宗憲,“改良型SUS440系麻田散鐵不銹鋼之熱處理研究”, 碩士論文 , 中華大學, 新竹市, 台灣 (2006)。
[24] H.J. Goldschmidt, “The structure of carbides in alloy steel”, Journal of the Iron and Steel Institute, 160, 345 (1948).
[25] H. Wada, “Thermodynamic properties of carbides in 2.25Cr-1Mo steel at 985 K”, Metallurgical Transactions A, 17, 1585-1592 (1986).
[26] D. Peckner and I.M.Bernstein, Handbook of Stainless Steels, pp. 6-19, McGraw-Hill, UMich (1977).
[27] K.P. Balan and A. Venugopal Reddy, “Austenite precipitation during tempering in 16Cr-2Ni Martensitic stainless steels”, Sarma Scriptanaterialia, 39, 901-905 (1998).
[28] B. Miao, D.O. Northwood, L.C. Lim and M.O. Lai, “Microstructure of tempered AISI 403 stainless steel”, Materials Science and Engineering A, 171, 21-33 (1993).
[29] R. Charlie Brooks, “A metallographic examination of crack-path propagation in embrittled 12% Cr steel”, Materials Characterization, 38, 103-117 (1997).
[30] J. Janovec, M. Svoboda and J. Blach, “Evolution of secondary phases during quenching and tempering 12% Cr steel”, Materials Science and Engineering A, 249, 184-189 (1998).
[31] R.W. Cahn, P. Haasen and E.J. Kramer, “Materials science and technology: a comprehensive treatment” Vol. 7, p.615, Wiley-VCH, Bellingham, WA, U.S.A (1992).
[32] D.J. Thoma and J.H. Perepezko, “A geometric analysis of solubility ranges in Laves phases”, Journal of Alloys and Compounds, 224, 330-341 (1995).
[33] C.T. Liu, J.H. Zhu and M.P. Brady, “Physical metallurgy and mechanical properties of transition-metal Laves phase alloy”, Intermetallics, 8,1119-1129 (2000).
[34] 魯世強, 黃柏云, 賀躍軍, “Laves相合金的物理冶金特性”材料導報,
1, 11-17 (2003)。
[35] K. Maile, “Evaluation of microstructural parameters in 9–12% Cr-steels”, International Journal of Pressure Vessels and Piping, 84, 62-68 (2007).
[36] G. Eggeler, “The effect of long-term creep on particle coarsening in tempered martensite ferritic steels”, Acta Metallurgica, 37, 3225-3234 (1989).
[37] A. Aghajani, Ch. Somsen and G. Eggeler, “On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel”, Acta Metallurgica, 57, 5093-5106 (2009).
[38] A. Kipelova, A. Belyakov and R. Kaibyshev, “Laves phase evolution in a modified P911 heat resistant steel during creep at 923”, Materials Science and Engineering A, 532, 71-77 (2012).
[39] I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova and R. Kaibyshev, “Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K” , Metallurgical and Materials Transactions A, 615, 153-163 (2014).
[40] K. Yamamoto, Y. Kimura and Y. Mishima, “Effect of Matrix Substructures on Precipitation of the Laves Phase in Fe-Cr-Nb-Ni System”, ISIJ International, 43, 1253-1259 (2003).
[41] M.I. Isik, A. Kostka, V.A. Yardley, K.G. Pradeep, M.J. Duarte and P.P. Choi, “The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels”, Acta Metallurgica, 90, 94-104 (2015).
[42] M.I. Isik ,A. Kostka and G. Eggeler, “On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels”, Acta Materialia, 81, 230-240 (2014).
[43] I. Fedorova, A. Kipelova, A. Belyakov and R. Kaibyshev, “Microstructure Evolution in an Advanced 9 pct Cr Martensitic Steel during Creep at 923 K (650℃)”, Metallurgical and Materials Transactions A, 44, 128-135 (2013).
[44] O. Prat, J. Garcia,D. Rojas, G. Sauthoff and G. Inden, “The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels”, Intermetallics, 32, 362-372 (2013).
[45] A. Aghajani, F. Richter, C. Somsen, S.G. Fries,I. Steinbach and G. Eggeler, “On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel” , Scripta Materialia, 61 ,1068-1071 (2009).
[46] Y. Hosoi, N. Wade, S. Kunimitsu, T. Urita and J. Nucl, “Precipitation behavior of laves phase and its effect on toughness of 9Cr-2Mo Ferritic-martensitic steel”, Journal of Nuclear Materials, 461, 141-143 (1986).
[47] 侯晓霞, “淬火温度对M2高速钢力学性能的影响”热加工工艺,
6, 133-134 (2010)。
[48] S. Ghanein, M. Kashefi and M. Mazinani, “Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite–martensite dual-phase steel”, Journal of Magnetism and Magnetic Materials, 356, 103-110 (2014).
[49] 边书, 张玉妥, 王承志,“Fe-Cr-Ni 系相图计算”, 沈阳理工大学学报, 30, 17-21 (2011)。
[50] L. Zhao, T. Guo and G. Ji, “Effect of Trace Boron on Microstructure and Mechanical Properties of Carbon Steel & Stainless Steel”, Hot Working Technology, 40, 56-63 (2011).
[51] Y. Xu, M. Wang and Y. Wang, “Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging”, Journal of Alloys and Compounds, 621, 93-98 (2015).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top