跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施華儒
研究生(外文):Hua-Ju Shih
論文名稱:黏滯流環境下掃描探針與試體之互制探討
論文名稱(外文):Tip and Specimen Interaction of Scanning Probe Microscope in Viscous Fluid Environment
指導教授:施博仁施博仁引用關係
指導教授(外文):Po-Jen Shih
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:原子力顯微鏡壓力渦度半解析解
外文關鍵詞:atomic force microscopepressurevorticitysemi-analysis method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
於液體環境中操作的原⼦子力顯微鏡廣泛使用在掃描生物試體的表面輪廓。但接觸模式因探針直接貼著試體,容易使柔軟的生物試體損壞; 而敲觸模式是觸發微懸臂梁的特徵頻率導致探針週期性地敲擊試體,故敲觸式較為理想。但微懸臂梁在液體中振動會引致額外的水壓導致特徵頻率的飄移。鮮少研究著重於試體表面上,來⾃於探針針尖引致的流體動⼒⽔壓,而這微小的壓⼒足以使試體變形,影響掃描結果。 本研究將透過一套半解析方法,分析不同幾何形狀的針尖,其壓⼒分佈。根據結果, 錐形針尖會對試體產⽣最大的流體動⼒水壓(約為 0.5Pa),意即探針尚未接觸到試體時試體便會因⽔壓而造成數奈米的變形。此外,增加針尖後對試體造成的水壓為微懸臂梁時的20 倍。當半圓試體參與流固作⽤時,半圓試體壓⼒分佈由試體頂端向二側遞增,而試體左右兩側壓⼒力大小又與探針的相對位置有關。這些結果尚未被其他論⽂討論。
A procedure is Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. However, few studies have focused on the hydrodynamic pressure on the specimen. The pressure generated from the tip itself pushes the specimen, causing deformation. In this paper, we introduce a semi- analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone- shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is twenty times larger than the pressure without considering the tip effect. When consider the contribution of semicircle specimen, the pressure increase along the surface from the top of specimen to siders. And the relative position of specimen and probe influence the pressure ration with the left and ring of specimen. These results have not been motioned in other papers.
第一章 緒論
1.1前言……….……………………………..…………..………....1
1.2研究動機與方向………………………………………………...5
1.3文獻回顧………………………………………………………...5
第二章數學模型……………………………………………...…….11
2.1基本假設………………………………………………………..11
2.2公式推導………………………………………………………..12
2.3數值積分方法……………………….……………………...…..17
第三章探針與平直試體……………………………………….……21
3.1高程變化………………………………………………………..21
3.1.1高程變化對探針正規化渦度差之影響………………….......21
3.1.2高程變化對探針正規化壓力差之影響………………….......23
3.1.3高程變化對基板正規化渦度之影響…………………….......24
3.1.4高程變化對探針正規化壓力之影響…………………….......26
3.2探針針尖幾何形狀之探討……………………………………...27
3.2.1 不同幾何形狀之針尖之正規化渦度……………………......30
3.2.2 不同幾何形狀之針尖之正規化壓力…………………...…...33
3.2.3 估算紅血球之變形量…………………………………….....35
3.3 探針有無針尖之比較……………………………………….....37
3.4探針力學性質與雷諾數之關係………………………………...38

第四章 半圓形試體……………………………………………...…41
4.1 高程變化…………………………………………………..…..41
4.1.1 高程變化對半圓試體正規化渦度之影響……………......…41
4.1.2高程變化對半圓試體正規化壓力之影響……………...…....43
4.2半圓試體直徑變化……………………………………………..44
4.2.1半圓試體直徑不超過探針針尖寬……………………….......45
4.2.2半圓試體直徑介於探針針尖寬與微懸臂梁寬之間……........46
4.2.3半圓試體直徑大於微懸臂梁寬以上…………………….......47
4.2.4半圓試體直徑趨近於無窮大…………………………….......48
4.3 探針橫向掃描半圓試體之情況………………………………..48
4.3.1探針橫向掃描半圓試體之正規化渦度分佈…………….......49
4.3.2探針橫向掃描半圓試體之正規化壓力分佈…………….......50
第五章 結論與展望……………………………………………......52
5.1 探針針尖幾何形狀對平面基板之影響………………………...52
5.2 探針掃描半圓試體……………………………………………..54
5.3 展望…………………………………………………………....55
參考文獻……………………………………………………………56
附錄1……………………………………………………....……….59
Basak, S., Raman, A., Garimella, S.V. (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. Journal of Applied Physics. 114906, doi:10.1063/1.2202232.
Enge, A., Schoenenberger, C.A., Moller, D.J. (1997) High resolution imaging of native biological sample surfaces using scanning probe microscopy. Current Opinion in Structural Biology. 7(2):279-284
Green, C.P. and Sader, J.E. (2002) Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Phys. 92, 6262.
Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Green, C.P. (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Instrum. 75, 1988.
Green, P. and Sader, J.E. (2005) Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface. AIP Physics of Fluids. 073102, doi: 10.1063/1.1995467
Horton, M.A., Lehenkari, P.P., Charras, G.T. (2001) Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy. 86, 85–95.
Kim, Y., Kim, K., Park, Y.K. (2012) Measurement Techniques for Red Blood Cell Deformability: Recent Advances. In Blood Cell - An Overview of Studies in Hematology (Terry E. Moschandreou), pp. 168–194, InTech, DOI: 10.5772/2979.
Manfred, R. (1997) Measuring the elastic properties of biological samples with the AFM. Engineering in Medicine and Biology Magazine, IEEE. 5568142; doi: 10.1109/51.582176
Medalsy, I.D., Moller, D.J. (2013) Nanomechanical Properties of Proteins
and Membranes Depend on Loading Rate and Electrostatic Interactions. American Chemical Society. 10.1021/nn400015z
Moller, C., Allen, M., Elings, V., Engel, A., Moller, D.J. (1999) Tapping-Mode Atomic Force Microscopy Produces Faithful High-Resolution Images of Protein Surfaces. Biophysical Journal. 1150-1158
Parry, G., Colin, J., Coupeau, C., Foucher, F., Cimetiere, A., Grilhe, J. (2005) Effect of substrate compliance on the global unilateral post-buckling of coatings: AFM observations and finite element calculations. 53, 441–447.
Sader, J.E. (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, doi:10.1063/1.368002.
Sader, J.E. and Chon, J.W.M. (1999) Calibration of rectangular atomic force microscope cantilevers. Instrum. 70, 3967.
Scherer, M.P., Frank, G., Gummer, A.W. (2000) Experimental determination of the mechanical impedance of atomic force microscopy cantilevers in fluids up to 70 kHz. Phys. 88, 2912.
Shih, P.J. (2014) Frequency function in atomic force microscopy applied to a liquid environment. Sensors. 9369-9379, doi:10.3390/ s140609369.
Stark, M., Moller, C., Moller, D.J., Guckenberger, R. (2001) From Images to Interactions: High-Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopy. Biophysical Journal. 80(6):3009-3018
Tuck, E.O. (1969) Calculation of unsteady flows due to small motions of cylinders in a viscous fluid. J. Eng. Math. 3, 29–44.
Tung, R. C., Jana, A. Raman, A. (2008) Hydrodynamic loading of microcantilevers oscillating near rigid walls. J. Appl. Phys. 104, 114905.
Woolley, A.T., Cheung, C.L., Hafner, J.H., Lieber, C.M. (2000) Structure biology with carbon nanotube AFM probes. Cell Chemistry & Biology. R193-R204, doi: 10.1016/S1074-5521.
Xu, X., Carrasco, C., de Pablo, P.J., Gomez-Herrero, J., Raman, A. (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: A case study on viral capsids. Biophys. J. 95, 2520–2528.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top