跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅珮溱
研究生(外文):Pei-Chen Lo
論文名稱:分子晶體結構之理論研究
論文名稱(外文):Theoretical Study of Molecular Crystal Structure
指導教授:莊曜遠莊曜遠引用關係
指導教授(外文):Yao-Yuan Chuang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用化學系碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:116
中文關鍵詞:Hirshfeld表面π-π相互作用力取代基效應拓撲分析能量分解分子晶體
外文關鍵詞:Hirshfeld Surfaceπ-πinteractionsubstituent effecttopological analysisenergy decomposemolecular crystal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究進行晶體分析與量子化學計算,一系列具不同取代基的Benzoylleucine
Diethyl Amides(BDA)的晶體,利用Hirshfeld Surface 分析,由% C…C 值篩選出具
有π-π 相互作用的分子晶體,大部分具有π-π 相互作用BDA 二聚體為相同掌性,
此與固有文獻所得結果相同;然相較於以往之研究,本文利用指紋圖定量分析多種
類型作用力於分子堆疊的貢獻度。
為量化不同取代基對π-π 相互作用的影響,利用MP2 計算二聚體,發現結合
能與Hammett constat(Σσp)具有相關性,也以SAPT 進行分子間相互作用能量分解分
析,發現色散力在分子間交互作用是重要的。經由AIM、NCI 電子密度拓撲法來圖
解相互作用力,可視化這些不同類型的作用力。從計算結果發現分子間的鍵臨界點
的potential energy 與二聚體的結合能的關聯。
藉由分析ring model 與reduced model 的相互作用力,進一步了解分子晶體堆
疊的方式與不同分子間作用力的協同作用,以達到利用理論計算從事分子識別研究
的目的。
We carried out both quantum calculations and crystal engineering analysis to a series
of substituted Benzoylleucine Diethyl Amides (BDA) molecules which were synthesized
for the Chiral Solid Phase usage. Compare to previous crystal structure analysis, we apply
the Hirshfeld Surface analysis to the BDA and found the BDA dimers with π-π interaction
are homochiral which is in consistent with literature. We further quantify the contributions
of distinct atoms to different types of the intermolecular forces between BDA dimmers by
means of fingerprint plots.
We performed Sencond-Order Moller-Plesset Perturbation Theory (MP2) calculations
to the ring model with various substituents.Good correalation is observed between the
Hammett constant (Σσp) and the binding energy. We also analyzed the energy components
of binding energy by Symmetry Adapted Perturbation Theory (SAPT) which indicated that
dispersion forces is important. In order to visualize the noncovalent interactions,
topological analysis such as Atom In Molecule and Non-Covalent Interaction were applied.
We found the electron density at the Bond Critical Point (BCP) can be used to estimate the
binding energy.
We hope by investigating the cooperation between the intermolecular forces, we are
able to explain the formation of BDA dimers and hence to assist the design of new system
for Chiral Solid Phase separation and at the same time gain more insight on molecular
recognition using theoretical methods.
目錄 .................................................................................................................... I
圖目錄 ............................................................................................................. IV
表目錄 ............................................................................................................. VI
附錄圖A 目錄 .............................................................................................. VII
附錄圖B 目錄 ............................................................................................. VIII
附錄圖C 目錄 ................................................................................................ IX
附錄圖D 目錄 ................................................................................................. X
附錄表E 目錄 ................................................................................................ XI
中文摘要 ........................................................................................................... 1
英文摘要 ........................................................................................................... 2
第一章 分子間作用力 ..................................................................................... 3
1.1 超分子化學 ......................................................................................... 3
1.2 分子間相互作用力 ............................................................................. 4
2.2.1 氫鍵 .......................................................................................... 5
2.2.2 π-π 相互作用力 ....................................................................... 6
2.2.3 凡德瓦力 ................................................................................. 9
第二章 能量分解 ........................................................................................... 11
2.1 交互作用能(Interaction Energy) ..................................................... 11
2.2 雙突變循環(Double-Mutant Cycles,DMC) .................................... 12
2.3 對稱性匹配微擾理論(Symmetry Adapted Perturbation Theory).... 14
第三章 拓樸分析(Topology Analysis) .......................................................... 19
3.1Hirshfeld Suface ................................................................................. 19
3.1.1 3D-Graph: Mapping on the Surface ....................................... 21
3.1.2 2D-Graph:Fingerprint Plot ..................................................... 21
3.2 Atom in Molecules (AIM) ................................................................. 23
3.3 Electron Localization Function (ELF) .............................................. 24
3.4 Localized Orbital Locator (LOL) ...................................................... 26
3.5 Non-Covalent Interactions Plot (NCIPLOT) .................................... 26
3.5.1 區分非共價相互作用 ........................................................... 26
3.5.2 非共價相互作用類型 ........................................................... 27
第四章 結果討論 ........................................................................................... 29
4.1 不同取代基Benzoylleucine Diethyl Amides 探討 ......................... 31
4.1.1 由X-Ray 晶體資訊探討 ...................................................... 31
4.1.2 Hirshfeld Surface 與指紋圖之探討 ...................................... 33
4.2 不同位置含氟取代效應 ................................................................... 37
4.2.1 由X-Ray 晶體資訊探討 ...................................................... 37
4.2.2 Hirshfeld surface 與指紋圖之探討 ....................................... 37
4.3 Reduced Model ................................................................................. 40
4.4 Ring Moldel ....................................................................................... 43
4.4.1 ππ 相互作用力 ....................................................................... 43
4.4.2 ππ 相互作用力之能量分解 ................................................... 49
4.7 拓撲分析 .......................................................................................... 52
4.7.1 單取代基探討 ....................................................................... 53
4.7.2 雙取代基探討 ....................................................................... 54
4.7.3 三取代基探討 ....................................................................... 55
第五章 結論 ................................................................................................... 57
第六章 參考文獻 ........................................................................................... 59
附錄A ............................................................................................................. 64
附錄B ............................................................................................................. 84
附錄C ............................................................................................................. 88
附錄D ............................................................................................................. 92
附錄E .............................................................................................................. 98
1. Klebe, G.; Graser, F.; Hadicke, E.; Berndt, J., Acta Crystallographica
1989, B45, 69.
2. Haleblian, J.; McCrone, W., J. Pharm. Sci. 1969, 58, 911.
3. Hunig, S.; Erk, P. A. M., Adv. Mater. 1991, 3, 225.
4. Gellman, S. H., Chem. Rev. 1997, 97 (5), 1231-1232.
5. Snyder, S. E.; Huang, B.-S.; Chen, Y.-T.; Lin, H.-S.; Carey, J. R., Org.
Lett. 2012, 14 (13), 3442-3445.
6. Snyder, S. E.; Huang, B.-S.; Chu, Y.; Lin, H.-S.; Carey, J. R., Chem. Eur.
J. 2012, 18, 12663-12671.
7. Lehn, J.-M., Angew. Chem. 1988, 27, 89.
8. Watson, J. D.; Crick, F. H. C., Nature 1953, 171, 737.
9. Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; F. Vögtle, a. J.-M. L.,
Angew. Chem. Int. Ed. 1997, 36 (5), 530-531.
10. Schmidt, G. M. J., Pure Appl. Chem. 1971, 27, 647.
11. Desiraju, G. R., Chem. Commun. 1997, 1475-1482.
12. D.Burrows, A., Struct. Bond. 2004, 108, 55–96.
13. Burrows, A. D.; Chan, C.-W.; Chowdhry, M. M.; McGrady, J. E.;
Mingos, D. M. P., Chem. Soc. Rev. 1995, 24 (5), 329-339.
14. Sinnokrot, M. O.; Sherrill, C. D., J. Phys. Chem. A 2006, 110, 10656-
10668.
15. Hunter, C. A.; Sanders, J. K. M., J. Am. Chem. Soc. 1990, 112, 5525-
5534.
16. Wheeler, S. E.; Houk, K. N., J. Am. Chem. Soc. 2008, 130, 10854-
10855.
17. V.Anslyn, E.; Doughetry, D. A., Modern Physical Organic Chemistry.
University Science Books: Sausalito,California, 2006.
18. Wheeler, S. E., J. Am. Chem. Soc. 2011, 133, 10262–10274.
19. http://goldbook.iupac.org (accessed August 26 2014).
20. S.F.Boys; F.Bernardi, Mol.Phys. 1970, 199, 553-566.
21. Carter, P. J.; Winter, G.; Wilkinson, A. J.; Fersht, A. R., Cell.1984,
38,835.
22. Cera, E. D., Chem. Rev. 1998, 98, 1563.
23. Cockroft, S. L.; Hunter, C. A., Chem. Soc. Rev. 2007, 36, 172-188.
24. Carver, F. J.; Hunter, C. A.; Seward, E. M., Chem. Commun. 1998,
(7), 775-776.
25. Cockroft, S. L.; Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J., J.
Am. Chem. Soc. 2005, 127, 8594-8595.
26. Hohenstein, E. G.; Sherrill, C. D., J. Chem. Phys. 2010, 132, 184111.
27. Sinnokrot, M. O.; Sherrill, C. D., J. Am. Chem. Soc. 2004, 126 (24),
7690-7697.
28. Sherill, C. D., Acc. Chem. Res. 2013, 46 (4), 1020–1028.
29. Ringer, A. L.; Sherrill, C. D., J. Am. Chem. Soc. 2009, 131 (13), 4574–
4575.
30. Watt, M.; Hardebeck, L. K. E.; Kirkpatrick, C. C.; Lewis, M., J. Am.
Chem. Soc. 2011, 133, 3854–3862.
31. Hohenstein, E. G.; Duan, J.; Sherrill, C. D., J. Am. Chem. Soc. 2011,
133, 13244–13247.
32. McKinnon, J. J.; A.Spackman, M.; S.Mitchellb, A., Acta
Crystallographica Section B 2004, 60, 627.
33. Spackman, M. A.; Byrom, P. G., Chem. Phys. Lett. 1997, 267, 215-220.
34. Spackman, M. A.; Jayatilaka, D., CrystEngComm 2009, 11, 19-32.
35. Spackman, M. A.; McKinnon, J. J., CrystEngComm 2002, 4 (66), 378–
392.
36. McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A., Chem. Commun.
2007, 3814-3816.
37. Parkin, A.; Barr, G.; Dong, W.; Gilmore, C. J.; Jayatilaka, D.;
McKinnon, J. J.; Spackman, M. A.; Wilson, C. C., CrystEngComm
2007, 9, , 648-652.
38. Matta, C. r. F.; Boyd, R. J., An Introduction to the Quantum Theory of
Atoms in Molecules. Wiley-VCH Verlag GmbH & Co. KGaA: 2007.
39. Schmider, H. L.; Becke, A. D., J. Mol. Struct. (THEOCHEM) 2000,
527, 51-61.
40. Johnson, E. R.; Keinan, S.; Mori-Sa´nchez, P.; Contreras-Garcı´a, J.;
Cohen, A. J.; Yang, W., J. Am. Chem. Soc. 2010, 132, 6498–6506.
41. Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;
Piquemal, J.-P.; Beratan, D. N.; Yang, W., J. Chem. Theory Comput.
2011, 7, 625-632.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top