跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明源
研究生(外文):Lin, Ming-Yuan
論文名稱:平整劑在銅電鍍系統之電化學行為研究
論文名稱(外文):Electrochemical Analyses of Leveler Additives in Copper Electrodeposition System
指導教授:李陸玲
指導教授(外文):Li, Lu-Lin
口試委員:李陸玲陳建仲李文錦楊家榮
口試委員(外文):Li, Lu-LinChen, Chien-ChonLi, Wen-JinYang, Chia-Jung
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:能源工程學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:銅電鍍添加劑平整劑電化學分析
外文關鍵詞:Copper ElectrodepositionAdditiveLevelerElectrochemical analyses
相關次數:
  • 被引用被引用:1
  • 點閱點閱:638
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
以銅電鍍進行高深寬比的矽通孔或盲孔填充來作為中介層(Interposer)材料來垂直連接晶圓為3D IC封裝之重要技術。欲達到完美填孔的難度隨深寬比的提高而加深,因此,需加入多種添加劑加以控制。例如:聚二硫二丙烷磺酸鈉(bis(3-sulfopropyl)disulfide, SPS)、聚乙二醇(polyethylene glycol, PEG)與健那綠B(Janus Green B, JGB)等。
本研究針對平整劑進行電化學性質分析與探討,藉由循環伏安法及計時電位法搭配旋轉圓盤電極控制強制對流的強弱,針對銅電鍍添加劑的濃度效應、交互作用、吸附性質及強制對流下對銅電鍍行為的影響進行研究分析,並選用Indione Blue (IB)作為新型平整劑與傳統平整劑相互比較研究,配合實際電鍍矽晶圓片來證實電化學分析的結果。
根據電化學分析結果顯示,加速劑SPS的加速效果優於MPS;抑制劑PEG添加濃度增加,並不會等比例的抑制銅離子還原;常用的平整劑JGB在低濃度添加時是加速效果,且在不同電流密度下的電化學行為表現也不同;新型平整劑IB的抑制效果無論鍍液中是否含有其他有機添加劑,都大於JGB,表示電鍍時的電流密度可以提高;而添加劑間的交互作用則是會依據不同添加順序導致添加劑先後吸附於電極表面,而有競爭吸附或是協同效應現象發生。
最後利用鍍液配方為0.88 M CuSO4‧5H2O、0.54 M H2SO4、40 ppm Cl-、200 ppm PEG、1 ppm SPS、1 ppm JGB或1 ppm IB,以定電流密度方式進行電鍍填孔,已成功電鍍填滿孔徑為50 μm、孔深為100 μm的Si/Cu晶圓片。

High aspect ratio (HAR) though-Si via and though hole filling by copper plating is an important technology for 3D IC package to vertically connect chip-to-chip as interposers. In order to achieve a conformal copper metallization in high aspect ratio vias and holes filling, organic additives such as bis(3-sulfopropyl)disulfide (SPS), polyethylene glycol (PEG), and (Janus Green B, JGB) are commonly used in the Cu plating bath.
In this work, a study of concentration effect of additives, the competition adsorption of the leveler additives on the copper electrodeposition, and forced convection behavior are performed by cyclic voltammetry (CV) and the galvanostatic measurements (GM) with rotating disk electrode under a well control of forced convection strength. According to the electrochemical analyses, the acceleration performance of SPS is better than that of MPS. The inhibition behavior of PEG did not increase isometrically with concentration of PEG if the amount of Cl- ion maintained at the same concentration. The electrochemical behavior of JGB is depended on bias current density and potential. The interaction studies between additives is according to the GM results with different injection sequence. By controlling the selected additives adsorbed on the surface of electrode, the antagonistic adsorption or synergistic behavior was discussed.
Furthermore, we introduce a novel lever, Indione Blue (IB), in the plating bath to study the electrochemical behavior. Compare to the traditional lever, JGB, a better inhibit behavior was shown in the CV and GM results. An obvious increase of the cathodic potential was revealed by subsequently inject 1 ppm IB at a current density of 10 mA/cm2 indicating a good inhibit behavior.
At the last part, electrolyte containing 0.88 M CuSO4‧5H2O、0.54 M H2SO4, 40 ppm Cl-, 200 ppm PEG, 1 ppm SPS, 1 ppm JGB or 1 ppm IB was used to fill blind holes on Si wafers. The blind holes with diameter of 50 μm and depth of 100 μm were successfully filled with copper electrodeposited at constant current density to achieve a void-free filling of TSV.

口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xi
第一章、緒論 1
第1-1節 前言 1
第1-2節 銅電鍍技術 3
1-2.1 無電電鍍 3
1-2.2 電鍍 5
1-2.3 通孔/盲孔電鍍(大馬士革電鍍技術) 6
第1-3節 電化學分析技術在銅電鍍的應用 8
1-3.1 計時電位法(Galvanostatic Measurements, GM) 8
1-3.2 循環伏安法(Cyclic Voltammetry, CV) 10
第1-4節 電鍍添加劑種類與特性 12
1-4.1 加速劑(Accelerator) 13
1-4.2 抑制劑(Suppressor) 16
1-4.3 平整劑(Leveler) 18
第1-5節 研究動機與目的 20
第二章、研究方法 21
第2-1節 實驗藥品 21
第2-2節 實驗裝置 22
第2-3節 實驗步驟 26
2-3.1電化學分析實驗 26
2-3.2矽晶圓電鍍填孔 28
第三章、結果與討論 29
第3-1節 添加劑效應 31
3-1.1 添加劑濃度效應 31
3-1.2 對流效應對銅電鍍之影響 39
第3-2節 添加劑交互作用 41
第3-3節 不同平整劑比較 49
3-3.1 平整劑的濃度效應比較 50
3-3.2 平整劑的交互作用比較 54
第3-4節 矽晶圓電鍍填孔 57
第四章、結論 62
參考文獻 64

1.Patrick, L., Conference on Frontiers of Characterization and Metrology for Nanoelectronics. 2007.
2.Kondo, K.; Yamakawa, N.; Tanaka, Z.; Hayashi, K., Copper damascene electrodeposition and additives. Journal of Electroanalytical Chemistry 2003, 559, 137-142.
3.Shen, F.-Y.; Dow, W.-P.; Liu, A.-H.; Lin, J.-Y.; Chang, P.-H.; Huang, S.-M., Periodic Pulse Reverse Cu Plating for Through-Hole Filling. ECS Electrochemistry Letters 2013, 2, D23-D25.
4.Emekli, U.; West, A. C., Effect of additives and pulse plating on copper nucleation onto Ru. Electrochim. Acta 2009, 54, 1177-1183.
5.Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H., Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development 1998, 42, 567-574.
6.胡啟章, 電化學原理與方法,五南出版, 民國100年, 63-177.
7.Xiao, N.; Li, D.; Cui, G.; Li, N.; Tian, D.; Li, Q.; Wu, G., An effective triblock copolymer as a suppressor for microvia filling via copper electrodeposition. Electrochim. Acta 2013, 109, 226-232.
8.(a) Broekmann, P.; Fluegel, A.; Emnet, C.; Arnold, M.; Roeger-Goepfert, C.; Wagner, A.; Hai, N. T. M.; Mayer, D., Classification of suppressor additives based on synergistic and antagonistic ensemble effects. Electrochimica Acta 2011, 56, 4724-4734; (b) Akolkar, R.; Landau, U., A Time-Dependent Transport-Kinetics Model for Additive Interactions in Copper Interconnect Metallization. Journal of The Electrochemical Society 2004, 151, C702-C711.
9.Dow, W.-P.; Li, C.-C.; Su, Y.-C.; Shen, S.-P.; Huang, C.-C.; Lee, C.; Hsu, B.; Hsu, S., Microvia filling by copper electroplating using diazine black as a leveler. Electrochimica Acta 2009, 54, 5894-5901.
10.Manu, R.; Jayakrishnan, S., Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application. Materials Chemistry and Physics 2012, 135, 425-432.
11.Dow, W.-P.; Huang, H.-S., Roles of chloride ion in microvia filling by copper electrodeposition: I. Studies using SEM and optical microscope. J. Electrochem. Soc. 2005, 152, C67-C76.
12.E. Farndon; F. C. Walsh; S.A. Campbell, Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions J. Appl.Electrochem. Soc. Prec. 1995, 572, 574-583.
13.Huynh, T. M. T.; Weiss, F.; Hai, N. T. M.; Reckien, W.; Bredow, T.; Fluegel, A.; Arnold, M.; Mayer, D.; Keller, H.; Broekmann, P., On the role of halides and thiols in additive-assisted copper electroplating. Electrochimica Acta 2013, 89, 537-548.
14.Dow, W.-P.; Yen, M.-Y.; Lin, W.-B.; Ho, S.-W., Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating. Journal of The Electrochemical Society 2005, 152, C769-C775.
15.Feng, Z. V.; Li, X.; Gewirth, A. A., Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths:  A Surface-Enhanced Raman Study. The Journal of Physical Chemistry B 2003, 107, 9415-9423.
16.Hai, N. T. M.; Furrer, J.; Stricker, F.; Huynh, T. M. T.; Gjuroski, I.; Luedi, N.; Brunner, T.; Weiss, F.; Fluegel, A.; Arnold, M.; Chang, I.; Mayer, D.; Broekmann, P., Polyvinylpyrrolidones (PVPs): Switchable Leveler Additives for Damascene Applications. Journal of The Electrochemical Society 2013, 160, D3116-D3125.
17.Dow, W.-P.; Yen, M.-Y.; Liu, C.-W.; Huang, C.-C., Enhancement of filling performance of a copper plating formula at low chloride concentration. Electrochimica Acta 2008, 53, 3610-3619.
18.盧俊瑋, 碩士論文,「通孔填充電鍍銅之配方開發」,國立中興大學,民國99年。
19.Hai, N. T. M.; Huynh, T. M. T.; Fluegel, A.; Mayer, D.; Broekmann, P., Adsorption behavior of redox-active suppressor additives: Combined electrochemical and STM studies. Electrochimica Acta 2011, 56, 7361-7370.
20.Dow, W.-P.; Huang, H.-S.; Yen, M.-Y.; Huang, H.-C., Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. J. Electrochem. Soc. 2005, 152, C425-C434.
21.Dow, W.-P.; Yen, M.-Y.; Liao, S.-Z.; Chiu, Y.-D.; Huang, H.-C., Filling mechanism in microvia metallization by copper electroplating. Electrochimica Acta 2008, 53, 8228-8237.
22.Lu, X.; Yao, L.; Ren, S.; Wang, Z., A study of bottom-up electroplated copper filling by the potential difference between two rotating speeds of a working electrode. Journal of Electroanalytical Chemistry 2014, 712, 25-32.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊