跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭智航
研究生(外文):Chih-Hang Cheng
論文名稱:紅藍綠LED光源對萵苣與蘭花的生長與發育之影響
論文名稱(外文):Effects of Red, Blue and Green Light-emitting Diodes on The Growth and Development of Lettuce and Orchid
指導教授:羅朝村羅朝村引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:84
中文關鍵詞:病害防治生長發育發光二極體光質
外文關鍵詞:Anthracnose diseaseDevelopmentGrowthLight-emitting DiodeLight quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以皺葉萵苣-翠妹(Lactua sativa L. var. crispa L.)、不結球白菜-三鳳二號(Brassica rapa chinensis)和三種花色品系之蘭花(Phalaenopsis amabilis)為實驗材料,探討利用高效能發光二極體(Light-Emitting Diode,LED)之不同光源比對作物生長、發育及病害發生的影響。萵苣實驗的光源處理包括: RGB(R 52.5 % + B 22.5 % + G 25 %, LED)、RBFL1(R 40% + B 10% + FL 50% = R 52.5% + B 22.5% + G 25%, LED+ fluorescent)、7R3B(R 70 % + B 30 %, LED)及FL(作為控制組);光子量、光週期和溫度(明/暗)分別為400 μmol/m2/s、20 hr及 28/25℃,結果顯示在RGB處理下與控制組相比能促進其生物質量、葉片數量、可溶性醣類含量和總多酚類含量增加。此外,RGB處理組也會降低植株的硝酸鹽含量。在白菜炭疽病之發生的研究條件,除了光週期改為16 hr外,其他則在相似的光源配比處理下,在RGB處理組下亦能有效低降低菌絲生長和植株炭疽病的罹病率。三種花色品系之蘭花的研究,光源處理以8R2B、7R3B、6R4B及FL(作為控制組);生長期光子通量、光週期和溫度(明/暗)為100與120μmol/m2/s、12 hr及31/28℃;在抽梗開花期,則僅光週期和溫度(明/暗)作調整為8 hr及25/18℃;結果顯示三種花色品系之蘭花生長在光子量為設定120μmol/m2/s下,在所有光源處理組相比,僅控制組葉長與葉寬的成長率均達到20 %以上,葉數的成長率亦可達到75 %以上。在光子量為100μmol/m2/s之7R3B處理組下,其花梗長度最長,而且抽梗率及開花率亦是最高。對於花苞數量而言,所有光源處理組相比,在光子量為120μmol/m2/s,控制組的花苞數量最多,達到7.73顆。

In this study, effect of different light sources including red (R), blue (B) and green light-emitting diode (LED) lights on the growth and development of lettuce (Lactuasativa L. var. crispa L.), orchid (Phalaenopsis amabilis) and disease resistant of Chinese cabbage (Brassica rapa chinensis), were evaluated. In lettuce test, photosynthetic photon flux (PPF), photoperiod, and air temperature (light/dark) was conducted to 400 μmol/m2/s, 20 hr, and 28/25 ℃ under different light sources such as, R 70% + B 30% (LED, 7R3B), R 52.5% + B 22.5% + G 25% (LED, RGB) and R 52.5% + B 22.5% + G 25% (LED+ fluorescent, RBFL1), and a white fluorescent lamp (FL, as a control) in growth chamber. The results indicated that the fresh weights of shoots and roots, number of leaf, soluble sugars and total polyphenol compounds of lettuce treated with RGB were significantly increased as compared with control light. However, the nitrate contents of lettuce was decreased, compared to that in the white fluorescent lamp control. In anthracnose disease of Chinese cabbage study under a similar light sources treatment except photoperiod of 16 hr, the mycelium growth of the pathogen treated with RGB was inhibited. The disease severity anthracnose disease caused by Colletotrichum higginsianum of Chinese cabbage treated with RGB were reduced as compared to treated with FL. In orchid study, PPF, photoperiod, and air temperature (light/dark) of orchid growth period was used as 120 and 100 μmol/m2/s1, 12 hr, and 31/28℃, respectively. But, flower-stalk and flowering period was conducted as 120 and 100 μmol/m2/s, 8 hr, and 25/18℃ under 8R2B, 7R3B, 6R4B and a white fluorescent lamp (FL, as a control) in growth chamber. The growth percentage of leaf length, leaf width and leaf number of three kinds of orchid cultivars treated only with the FL (120 μmol/m2/s) could be increased over 20% and 75%, respectively. However, the flower-stalk length of orchid treated with 7R3B (100 μmol/m2/s) was the longest among all treatments. Similarly, the percentage of flower-stalk emergence and bloom of orchid under 7R3B treatment were highest as compared to other LED-treatments, There was the most flower number per stalk of orchid treated with FL (120 μmol/m2/s). The average flower number per stalk of three cultivar orchids was 7.73.

摘要.......................................................i
Abstract.................................................iii
致謝.......................................................v
目錄......................................................vi
表目錄....................................................ix
圖目錄....................................................xi
第一章緒論與研究目的.......................................1
1.1 緒論...................................................1
第二章 文獻回顧............................................3
2.1 萵苣 (Lettuce).........................................3
2.1.1 生長溫度.............................................4
2.1.2 種子特性.............................................4
2.1.3 栽種方法.............................................4
2.2 蘭花 (orchid)..........................................5
2.2.1 栽培介質.............................................6
2.2.2 光照.................................................6
2.2.3 溫度.................................................6
2.3 太陽光.................................................7
2.4 光源對植物的影響.......................................7
2.4.1 光合作用.............................................7
2.4.1.1 影響光合作用的因素.................................8
2.4.2 光量強度(Light Intensity)對植物生長影響.............10
2.4.3 光型態..............................................12
2.4.3.1 植化素(Phytochemicals)............................12
2.4.4 光週期..............................................16
2.5 人工光源..............................................17
2.6 硝酸鹽................................................17
2.6.1 硝酸鹽之毒性........................................18
2.6.2 硝酸鹽安全攝取量....................................19
2.6.3 植物體內硝酸鹽含量的影響因子........................20
2.7 白菜炭疽病(Cruciferous vegetable anthracnose).........21
第三章 材料與方法.........................................23
3.1 實驗所需之實驗設備與材料..............................23
3.1.1 植物材料與育苗......................................23
3.2 光源製備..............................................24
3.3 不同光源處理下對萵苣的生長發育之探討..................25
3.3.1 不同光源處理下對萵苣育苗期生長之探討................25
3.3.2不同光源處理下對萵苣生長之探討.......................25
3.3.3 額外添加綠光處理下對萵苣生長之探討..................26
3.4 鮮重與乾重測定........................................26
3.5 葉綠素與類胡蘿蔔素含量測定............................26
3.6 可溶性蛋白含量測定....................................27
3.7 可溶性醣類含量測定....................................27
3.8 硝酸鹽含量測定........................................28
3.9 總多酚含量測定........................................28
3.10 不同光源處理下對白菜炭疽病耐受性之探討...............29
3.10.1 炭疽病病原菌株及來源...............................29
3.10.2 菌種保存...........................................29
3.10.3 菌種活化及培養.....................................29
3.10.4 菌株懸浮液製備.....................................29
3.10.5 光源製備...........................................30
3.10.5.1 不同光處理對炭疽病菌孢子發芽及生長之影響.........30
3.10.5.2 不同光處理對白菜炭疽病之影響.....................31
3.11 不同光源處理下對蘭花生長、抽梗及開花之探討...........31
3.11.1 不同光處理對蘭花生長試驗之探討.....................31
3.11.2 蘭花抽梗及開花試驗之探討...........................32
3.11.3 葉綠素指數測定.....................................32
3.12 統計分析............................................32
第四章 結果...............................................33
4.1 不同光源處理下對萵苣的生長發育之影響..................33
4.1.1 不同光源處理下對萵苣育苗期生長之影響................33
4.1.2 不同光源處理下對萵苣生長之影響......................33
4.1.3 額外添加綠光處理下對萵苣生長之影響..................34
4.2 不同光源處理下對白菜炭疽病耐受性之影響................35
4.2.1 不同光處理對炭疽病菌孢子發芽及生長之影響............35
4.2.2不同光處理對白菜炭疽病之影響.........................35
4.3 不同光源處理下對蘭花生長、抽梗及開花之影響............36
4.3.1 不同光處理對蘭花生長試驗之影響......................36
4.2.2 蘭花抽梗及開花試驗之影響............................38
第五章 討論...............................................40
第六章 結論...............................................49
參考文獻..................................................65
附錄......................................................72
Extended Abstract.........................................76
簡歷(CV)..................................................84
表1.光波長對於植物生理與型態之影響........................14
表2.歐盟公告修訂萵苣中硝酸鹽之最大限量標準................19
表3.實驗光源之紅藍綠配比..................................25
Table. 4 Fresh weight (FW) and dry weight (DW) of lettuce plantlets under the different light- source at 400μmol/m2/s treatment for 15 days after sowing at 28/25℃(light/dark) growth chamber...............................50
Table. 5 Plant fresh weight (FW), dry weight (DW), true leaf number, leaf length and leaf width of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber............................................50
Table. 6 Chlorophyll (Chl.), Chl. a, Chl. b, Chl. a/b and carotenoid (Car) contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃ growth chamber (light/dark)..51
Table. 7 Soluble proteins, soluble sugars, nitrate and total polyphenol contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber...52
Table. 8 Plant fresh weight (FW), dry weight (DW), true leaf number, leaf length and leaf width of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber............................................52
Table. 9 Chlorophyll (Chl.), Chl. a, Chl. b, Chl. a/b and carotenoid (Car) contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber...53
Table. 10 Soluble proteins, soluble sugars, nitrate and total polyphenol contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber...53
Table. 11 Spore number, percentage of spore germination and mycelium diameter (cm) of Colletotrichum higginsianum under the different light-source at 400μmol/m2/s treatment at 28/25℃ (light/dark) growth chamber.......................54
Table. 12 Increased and increased percentage of leaf length, leaf width and leaf number of red orchids under different light-source at 100 and 120μmol/m2/s treatment at 28/25℃(light/dark) growth chamber.....................55
Table.13 Increased and increased percentage of leaf length, leaf width and leaf number of black orchids under different light-source at 100 and 120μmol/m2/s treatment at 31/28℃(light/dark) growth chamber...............................56
Table. 14 Increased and increased percentage of leaf length, leaf width and leaf number and growth percentage of white orchids under different light-source at 100 and 120μmol/m2/s treatment at 31/28℃(light/dark) growth chamber..57
Table. 15 Number of flower-stalk emergence and percentage of flower stalk emergence of pink orchids under different light-source at 100 and 120μmol/m2/s treatment at 25/18℃(light/dark) growth chamber...............................58
Table. 16 Number of bloom, flower-stalk and flower bud, flower-stalk length and percentage of bloom of pink orchids under different light-source at 100 and 120μmol/m2/s treatment at 25/18℃(light/dark) growth chamber...........59
Fig. 1. Plantlets growth of lettuce under different light-source at 400μmol/m2/s treatment for 15 days after sowing at 28/25℃(light/dark) growth chamber.....................60
Fig. 2. Plants growth of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber...60
Fig. 3. Plants growth of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber...61
Fig. 4. Chlorophyll (Chl), chl a, chl b, and carotenoid (Car) contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber............61
Fig. 5. Chlorophyll (Chl), chl a, chl b, and carotenoid (Car) contents of lettuce under the different light-source at 400μmol/m2/s treatment for 20 days after plantlet-planting at 28/25℃(light/dark) growth chamber............62
Fig. 6. Mycelial growth of Colletotrichum higginsianum under the different light at 400μmol/m2/s treatment for 7 days after inoculation at 28/25℃(light/dark) growth chamber...................................................62
Fig. 7. Disease severity of Colletotrichum higginsianum of Brassica rapa chinensis under the different light-source at 400μmol/m2/s treatment at 28/25℃(light/dark) growth chamber...................................................63
Fig. 8. Growth of orchids under different light-source treatment and photosynthetic photon flux after three months at 31/28℃(light/dark) growth chamber.....................63
Fig. 9. Chlorophyll Concentration index of different flower color of orchids under different light-source at 100 and 120μmol/m2/s treatment at 31/28℃(light/dark) growth chamber...................................................64
Fig. 10. Flower-stalk and bloom of pink orchids under different light-source at 100 and 120μmol/m2/s treatment after three months at 25/18℃(light/dark) growth chamber..64


王慧媛,2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。國立臺灣大學生農學院生物產業機電工程學系碩士論文。p5-16
沈再木。2007。蝴蝶蘭栽培介質種類及物化特性,蝴蝶蘭栽培,第19-28 頁。國立嘉義大學編印,嘉義。127 頁。
李哖、郭瑋君。2000。台灣蝴蝶蘭之光合作用。產業科技發展學術合作論文集。1:11-18。
李哖、林菁敏. 1984. 溫度對白花蝴蝶蘭生長與開花之影響。中國園藝 20:223-231。
郭孚燿,1998。遮陰及氮肥對芥藍菜硝酸鹽累積之影響。臺中區農業改良場研究彙報 58:59-66
陳文輝。2002。蝴蝶蘭的品種改良。科學發展。351:32-39
陳金男,2006。LED 光環境控制系統之建立與其應用於星辰花組培苗生理影響之探討。國立台灣大學生物產業機電工程學研究所碩士論文。p5-6
陳瑋芸、蔡沁玹、郭景豪、黃立宇、蔡佳芬、曾素香、闕麗卿、施養志,2012。利用離子層析法檢測蔬菜中硝酸鹽及亞硝酸鹽含量。食品藥物研究年報3:1-7
陳葦玲、周書緯、李品瑩、邱瑜君、張雅文,2010。氮肥及鉬離子對油菜及青梗白菜硝酸鹽累積量之影響。臺中區農業改良場研究彙報。106:11-22
陳榮五,2003。台灣地區有機農業產業發展現況與趨勢。台灣地區有機農業產業發展研討會專刊。p8-17
高德錚,2010。影響蔬菜中硝酸鹽含量之探討。臺中區農業改良場專題討論專集 105:234-239
高德錚,2013。臺灣發展蔬菜植物工廠之契機。臺中區農業改良場一○一年專題討論專集。p119-122
高德錚,1997。生菜萵苣知多少。臺中區農業改良場農業專訊。第15期
許欣正,2002。光質對組培苗生長影響之研究。國立中興大學農業機械工程學系碩士論文。4-7
許明晃、楊志維、張新軒、楊棋明、黃文達,2006。空氣污染物對甘蔗葉片色素與反射光譜特徵之影響。作物、環境與生物資訊 3:345-354
張明毅、程登國、連雅苹、方煒、陳杰廷,2009。不同光質對苗菜成長與抗氧化力之影響。生物機電與農機科技論文發表會論文集。國立宜蘭大學生物機電工程學系。p457-462
張明毅、方煒、吳柏宏,2009。長程海運過程中補光策略對蝴蝶蘭苗花梗發育之影響。生物機電與農機科技論文發表會論文集。國立宜蘭大學生物機電工程學系。p451-456
張海輝、梁岩、胡瑾、劉正道、周慶珍、樊宏攀,2013。太陽光特定波段光強快速檢測方法研究。光子學報。42(12):1501-1506。
張簡秀容,1999。葉萵苣栽培管理。台灣農業。35 (1): 68-71。
黃振文、彭玉湘,2008。有機農法的作物病害管理技術。有機農法的作物病害管理技術。13-24
黃家慧、許世弦、黃書虹、黃光亮,2008。不同日/夜溫處理對蝴蝶蘭抑梗及開花之影響。臺灣園藝(J. Taiwan Soc. Hort. Sci.) 54(1) : 11-23。
黃慈薇,2005。茄冬、大葉楠及大頭茶樹苗葉片不同發育階段光合作用潛力及相關生理活動之變化。國立屏東科技大學森林系碩士論文。p61
楊秀珠,2011。十字花科蔬菜病蟲害之發生與管理。行政院農業委員會動植物防疫檢疫局與行政院農業委員會農業藥物毒物試驗所。p1-58
楊秀珠、余思葳、黃裕銘,2010。萵苣之病蟲害發生與管理。合理、安全及有效使用農藥輔導教材-蔬菜-萵苣。行政院農業委員會農業藥物毒物試驗所。p1-40
葉志新、李淑真、廖芳心、葉育哲、蔡月夏、蔡媦婷,2011。蝴蝶蘭之雜交育種。花卉研究團隊成果發表會專刊。行政院農業改良場。p25-34
鄭志玄,2011。自動化 LED 植物工廠。國立成功大學工程科學系碩士論文。17頁
蕭巧玲、楊純明、何佳勳、蔡淑珍、林毓雯、劉滄棽。2013。氮肥及氣象環境對設施葉萵苣生長及硝酸鹽含量之影響。作物、環境與生物資訊。10:284-289。
饒瑞佶、方煒、蔡田龍,2003。超高亮度紅、藍光LED應用於蝴蝶蘭組培苗栽培之研究。農業機械學刊第12卷第4期。p93-100
Ahern, F.J., 1988. The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. Remote Sensing. 9:1451-1468.
Al-Abbas, A.H., Barr, R., Hall J.D., Crane F.L., Baumgardner M.F., 1974. Spectra of normal and nutrient-deficient maize leaves. Agronomy Journal. 66:16-20.
Alokam, S., Chinnappa, C.C. and Reid, D.M., 2002. Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Canadian Journal of Botany.80: 72–81.
Bajčan D., Harango, Ľ., Hrabovska, D. and Bončikova, D., 2013. Optimizing conditions for spectrophotometric determination of total polyphenols in wines using folin-ciocalteu reagent. Microbiology, Biotechnology and Food Sciences. 1699-1708.
Benedict, H.M., Swidler, R., 1961. Nondestructive method for estimating chlorophyll content of leaves. Science 133:2015-2016.
Blanchard, M.G., and Runkle, E., 2004. Temperature effects on flower induction of two Phalaenopsis orchid hybrids. HortScience 39: 882
Boardman, N.K., 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiology. 28:355-377.
Bowman, W.D., 1989. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves. Remote Sensing of Environment. 30:249-255.
Bradford, E., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-binding. Anal. Biochem.72, 248–254.
Carter, D.L.and Myers, V.I., 1963. Light reflectance and chlorophyll and carotene contents of grapefruit leaves as affected by Na2SO4, NaCl, and CaCl2. American Society for Horticultural Science. 82:217-221.
Carter, G.A., 1991. Primary and secondary effects of water content on the spectral reflectance of leaves. Botany. 78:916-924.
Carter, G.A.,Paliwal, K., Pathre, U., Green, T.H., Mitchell, R.J. and Gjerstad, D.H., 1989. Effect of competition and leaf age on visible and infra-red reflectance in pine foliage. Plant, Cell & Environment. 12:309-315.
Cataldo, D.A., Haroon, L.E., Schrader, L.E. and Youngs, V.L., 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis. 6:71–80.
Chan, Z., Yang Y.F. and Wang K., 2008. Effect of red and blue spectrum on photosynthesis physiological characteristics of two ecotypes of Leymus chinensis. 28 (7):1441-1444.
Christenson, E.A., 2001. Phalaenopsis: a monograph. Timber Press, Inc. U.S.A. 27-29
Cibula, W.G. and Carter, G.A., 1992. Identification of a narrow spectral band response to decreased ectomycorrhizal infection in slash pine. Remote Sensing. 13:925-932.
Craig, J. A. and Holm, R. H., 1989. Reduction of nitrate to nitrite by molybdenum-mediated atom transfer: A nitrate reductase reaction system. American Chemical Society. 111: 2111-2115.
Dale, M. P. and Causton, D. R., 1992. Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant. Functional Ecology. 6:190-196.
Demming-Adams, B., and Adams, W.W., 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends in Plant Science. 1:21-26.
Eichholzer, M. and Gutzwiller, F., 1998. Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: A review of the epidemiologic evidence. Nutrition Reviews. 56: 95-105.
Elia, A., Santamaria, P. and Serio, F. 1998.Nitrogen nutrition, yield and quality of spinach. Food and Agriculture. 76: 341-346.
Escobar, D.E. and Gausman, H.W., 1978. Effect of lead on reflectance of Mexican squash plant leaves. Journal of the Rio Grande Valley Horticultural Society. 32:81-88.
Folta, K.M., 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiology. 135:1407–1416.
Folta, K.M.and Maruhnich, S.A., 2007. Green light: a signal to slow down or stop. Experimental Botany. 58:3099–3111.
Frohlich, C., 2012. Total solar irradiance observations. Surveys in Geophysics. 33:453–473.
Fu, W., Li, P., Wua, Y., 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae. 135: 45–51.
Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M., Giuliano, G., 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiology. 137: 199–208.
Goins, G.D., Yorio, N.C., Sanwo, M.M. and Brown, C.S., 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Experimental Botany. 48:1407–1413.
Goodwill, T.W., 1988. Plant Pigments. Academic Press, New York. 362 pp .
Grondelle, R. van and Zuber, H., 1992. The light reactions of photosynthesis. Photochemistry and Photobiology B: Biology, 15 : l-3.
Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W.V. and Harbinson, J., 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Experimental Botany. 6:3107–3117.
Hopkins, G.W. and Huner, N.P.A., 2009. Introduction to Plant Physiology, 4th Edition. Wilkey.
Horler, D.N.H., Barber, J. and Barringer, A.R., 1980. Effects of heavy metals on the absorbance and reflectance spectra of plants. Remote Sensing. 1:121-136.
Hunt, E.R. and Rock, B.N., 1989. Detection of changes in leaf water content using near- and middle-infra-red reflectances. Remote Sensing of Environment. 30:43-54.
Johkan, M., Shoji, K., Goto, F., Hashida, S. and Yoshihara, T., 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 45: 1809–1814.
Johkan, M., Shoji, K., Goto, F., Hashida, S., and Yoshihara, T., 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany. 75:128– 133.
Kataoka, I., Sugiyama, A. and Beppu, K., 2003. Role of ultraviolet radiation in accumulation of anthocyanin in berries of ‘Gros Colman’ grapes (Vitis vinifera L.). Japanese Society for Horticultural Science.72: 1–6.
Kim, H.H., Goins, G.D., Wheeler, R.M. and Sager, J.C., 2004a. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience. 39: 1617–1622.
Kim, H.H., Goins, G.D., Wheeler, R.M., and Sager, J.C., 2004b. Stomatal conductance of lettuce grown under or exposed to different light quality. Annals of Botany. 94: 691–697.
Leite, A.C., Robert, M.I., Gerald, L.T.C., Ganelevin, R. and Fagnani, M.A., 2008. Light spectrum management using colored nets aiming to controlling the growth and the blooming of Phalaenopsis sp. Acta Horticulturae. 770: 177-184
Lefsrud, M.G., Kopsell, D.A., Sams, C.E., 2008. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortSci 43,2243–2244.
Li, Q. and Kubota, C., 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany. 67:59–64.
Lillo, C. and Appenroth, K.J., 2001. Light regulation of nitrate reductase in higher plants: which photoreceptors are involved. Plant Biology. 3: 455-465.
Lin, K.H, Huang, M.Y., Huang, W.D., Hsu, M.H., Yang, Z.W. and Yang, C.M., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce.(Lactuca sativa L. var. capitata). Scientia Horticulturae. 150:86–91.
Lips, S.H., Leidi, E.O., Siberbush, M., Soares, M.I.M and Lewis, O.E.M., 1990. Physiological aspects of ammoniumand nitrate fertilization. Plant Nutrition. 13:1271-1289.
Lootens, P. and Heursel, J., 1998. Irradiance, temperature and carbon enrichment affect photosynthesis in Phalaenopsis hybrids. Hortscience. 33: 1183-1185
Lopez, R., Runkle, E.S., Wang Y.T., PhD, Blanchard, M. and Hsu, T., 2007. Growing the best Phalaenopsis. Orchids March pp.182-187
Malthus, T.J. and Madeira, A.C., 1993. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment. 45:107-116.
Massa, D.G., Kim, H.H, Wheeler, R.M. and Mitchell, C.A., 2008. Plant Productivity in Response to LED Lighting. Horticultural Science. 43,1951-1956.
McNellis, T.W., Deng, X.W.,1995. Light control of seedling morphogenetic pattern. Plant Cell 7, 1749–1761.
Milton, N.M., Ager, C.M., Eiswerth, B.A. and Power, M.S., 1989. Arsenic and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sensing of Environment.30:263-269.
Nelson, V.L., Gjerstad, D.H. and Glover, G.R., 1986. Determining nitrogen status of young loblolly pine by leaf reflectance. Tree Physiology. 1:333-339.
Ohashi-Kaneko, K., Takase, M., Kon, N., Fujiwara, K. and Kurata, K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology. 45: 189–198.
Peňuelas, J.R., Filella, I.I. and Araus, J.L., 1997. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Science. 37:198-202.
Ramalho, J.C., Marques, N.C., Semedo, J.N., Matos, M.C. and Quartin, V.L., 2002. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant biology. 4: 112–120.
Riedell, W.E. and Blackmer, T.M., 1999. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science. 39:1835-1840.
Samuoliene, G., Sirtautas, R.U., Brazaityte, A. and Duchovskis, P., 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry. 134: 1494–1499.
Samuolienė, G., Urbonavičiūtė, A., Duchovskis, P., Bliznikas, Z., Vitta, P. and Zukauskas, A., 2009. Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. Horticultural Science.44:1857-1860.
Sanchez, E. J., Benito, F. J. and Mintegui, R.S., 2010.Methemoglobinemia and consumption of vegetables in infants. Pediatrics. 107: 1024-1028.
Schwaller, M.R., Schnetzler, C.C., Marshall, P.E., 1983. The changes in leaf reflectance of sugar maple(Acer saccharum Marsh) seedlings in response to heavy metal stress. Remote Sensing. 4:93-100.
Schwartz, A. and Zeiger, E., 1984. Metabolicenergy for stomatal opening: Roles of photophosphorylation and oxidative phosphorylation. Planta 161:129–136.
Taiz, L. and Zeiger, E., 2010. Plant Physiology. 5th ed. Sinauer Associates, Inc., Sunderland, Massachusetts, USA. 782pp.
Terashima, I., Fujita, T., Inoue, T., Chow, W.S. and Oguchi, R., 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology. 50: 684–697.
Thomas, J.R. and Oerther, G.F., 1972. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy. 64:11-13.
Thomas, B., 2003. Photoperiodism. Encyclopedia of applied Plant Sciences.1077-1084.
Tsormpatsidis, E., Henbest, R.G.C., Davis, F.J., Battey, N.H., Hadley, P., and Wagstaffe, A., 2008. UVirradiance as amajor influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ”Revolution” grown under polyethylene films. Environmental and Experimental Botany. 63: 232–239.
Wang, H., Gu, M., Cui, J., Shi, K., Zhou, Y. and Yu, J., 2009. Effects of light quality on CO2assimilation, chlorophyll-fluorescence quenching, expression of Calvin cyclegenes and carbohydrate accumulation in Cucumis sativus. Photochemistry and Photobiology B: Biology. 96:30–37.
World Health Organization, 1996. Toxicological Evaluation of Certain Food Additives and Contaminants. Prepared by the Forty-Fourth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). International Programme on Chemical Safety (WHO Food Additives Series 35). WHO, Geneva.
Wu, M.C., Hou, C.Y., Jiang, C.M., Wang, Y.T., Wang, C.Y., Chen, H.H. and Chang, H.M., 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry. 101: 1753–1758.
Yang, C.M., Hsu, J.C. and Chen, Y.R., 1993. Light and temperature sensitivity of chlorophyll deficient and virescent mutants. Taiwan 38:49-56.
Yang, C.M., Hsu, J.C. and Shih, C.F., 1994. Response of chlorophyll a/b ratios in Yuan-Yang Lake Bryophytes to the alteration of light intensity. Proceedings of the National Science Council Re ic of China Part B Life Sciences. 18:134-137.
Yanovsky, M.J., Alconada-Magliano, T.M., Mazzella, M.A., Gatz, C., Thomas, B., Casal, J.J., Phytochrome, 1998. A affects stem growth, anthocyanin synthesis, sucrose phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta. 205: 235–241.
Yoshida, S., Forno J. H., Cook H. and Gornez K. A., 1976. Determination of chlorophyll in plant tissue. Laboratory manual of physiological studies for rice. IRRI 26:43-49.
Yu, S.M. and Yong, H.L., 2013. Effect of light quality on Bacillus amyloliquefaciens JBC36 and its biocontrol efficacy. Biological Control 64:203–210
Zhang, Z.L. and Qu, W.Q., 2004. Experiments of Plant Physiology. Higher Education Press, Beijing, China.
Zhou, Y. and Singh, B.R., 2002. Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant growth regulation. 38:165–171.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top