跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳銪助
研究生(外文):Yu-Chu Chen
論文名稱:鋁摻雜氧化鋅奈米片光檢測器與場發射元件之光電特性分析
論文名稱(外文):Photoelectrical and Field Emission Characteristics of Al doped ZnO Nanosheets
指導教授:楊勝州
指導教授(外文):Sheng-Joue Young
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:69
中文關鍵詞:水溶液法氧化鋁鋅奈米片光檢測器
外文關鍵詞:AlAqueous solution methodAlZnOnanosheetsUV light detector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅是便宜又實用性的II-VI族材料。摻雜三價元素(鋁、鎵和銦)在氧化鋅上,可以提升氧化鋅本身電性和光傳輸。本篇分成兩部分,第一部分是製備鋁摻雜氧化鋅並用水溶液法生長氧化鋁鋅奈米片;第二部分是用熱蒸鍍做成金電極並生長氧化鋁鋅奈米片進行光檢測器量測與場發射元件應用。第一部分主要清洗基板與濺鍍晶種層並水溶液法進行生長。最後用儀器分析表面形貌(SEM)、結晶度(XRD)、光學的特性(PL)和元素含量(EDS)跟(TEM)。分析量測是使用不同溫度和濃度進行水溶液法生長選取最佳的參數,接續會進行第二部分。第二部分是在晶種層上蒸鍍一層傳統的指叉狀電極在用水溶液法進行生長。並用365nm的紫外光進行光檢測器量測以及量測場發射。光檢測器量測使用Keithley2410在1伏特偏壓下進行紫外光開關量測並比較氧化鋅和氧化鋁鋅奈米片。研究結果發現氧化鋅與氧化鋁鋅的表面形貌並不會因摻雜有所改變,但在光學特性量測摻雜鋁會因摻雜鋁進去會降低550nm氧空缺的缺陷。摻雜鋁進去會提升電性使得氧化鋁鋅奈米片更加導電。

Zinc oxide is low-cost and practical II-VI chemical materials. Doped with trivalent elements Aluminum(Al), Gallium(Ga) and Indium(In) of zinc oxide can be improved to enhance the electrical characteristics of the zinc oxide primary. This work in two parts, the first part is the Aqueous solution method of Al-doped ZnO nanosheets growth. The second part is a layer deposited by thermal evaporation on a gold electrode in Zon seed layer and light detection and measurement field emission applications. The first part of the substrate cleaned and RF sputtering the seed layer and Aqueous solution growth method. Finally, the characteristic surface morphology (SEM) observation of instrumental analysis, crystal (XRD), optical properties (PL) and the element content (EDS) and (TEM). Determination of Aqueous solution growth method at different temperatures and concentrations, choose the best parameters. The second part will be to choose the best parameters. The second part is deposited on the seed layer is a layer of a conventional interdigitated electrodes in Aqueous solution grown. With 365nm UV light detector measuring and measurement field emission. Light detection tolerance measured using Keithley 2410 at 1 volt bias voltage switch ultraviolet measurements and compared ZnO and AlZnO nanosheets. ZnO and AlZnO surface morphology and doping does not change, but the optical properties of the measurement due to the Al-doped ZnO into the oxygen vacancy defect reduction at 550nm. Al-doped ZnO will increase electrical makes more conductive ZnO nanosheets.

摘要…………………………………………………………………………………….i
Abstract………………………………………………………………………………..ii
誌謝…………………………………………………………………………………...iii
目錄…………………………………………………………………………………...iv
表目錄………………………………………………………………………………...vi
圖目錄………………………………………………………………………………..vii
第一章 緒論…………………………………………………………………………..1
1.1 前言………………………………………………………………………………1
1.2 研究動機…………………………………………………………………………2
第二章 文獻回顧……………………………………………………………………..3
2.1 氧化鋅介紹………………………………………………………………………3
2.1.1 氧化鋅材料簡介……………………………………………………………3
2.1.2 氧化鋅的發光機制簡介……………………………………………………4
2.2 薄膜製成方式……………………………………………………………………5
2.2.1 物理氣相沉積法(Physical Vapor Deposition,PVD)……………………….5
2.2.2 化學氣相沉積法(Chemical vapor deposition,CVD)………………………6
2.2.3 溶液之薄膜形成法…………………………………………………………6
2.2.4 射頻磁控濺鍍系統(RF magnetron sputter system)………………………..7
2.2.5 電子束蒸鍍系統(Electron Beam Evaporation )……………………………9
2.3 氧化鋅奈米合成方法……………………………………………………………9
2.3.1 高溫法……………………………………………………………………..10
2.3.2 低溫法……………………………………………………………………..11
2.4 光學元件結構…………………………………………………………………..13
2.4.1 元件結構…………………………………………………………………..13
2.4.2 光檢測器工作原理………………………………………………………..13
2.4.3 蕭特基接面………………………………………………………………..14
2.4.4 金屬-半導體-金屬光檢測器工作原理………………………………..16
2.5 氧化鋅摻雜之特性……………………………………………………………..19
2.6 氧化鋅之應用…………………………………………………………………..19
第三章 實驗步驟與設備分析………………………………………………………20
3.1 實驗儀器和藥品………………………………………………………………..20
3.1.1 儀器介紹…………………………………………………………………..20
3.1.2 藥品介紹…………………………………………………………………..20
3.2 實驗架構………………………………………………………………………..21
3.3 實驗流程………………………………………………………………………..22
3.3.1 基板清理…………………………………………………………………..22
3.3.2 薄膜層製備………………………………………………………………..23
3.3.3 水溶液法成長氧化鋁鋅奈米片…………………………………………..24
3.4 分析儀器介紹…………………………………………………………………..27
3.4.1 物性檢測儀器介紹………………………………………………………..27
3.4.1.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy,FE-SEM)……………………………………………………………………………..27
3.4.1.2 能量散佈分析儀(Energy Dispersive Spectrometer,EDS)……………….28
3.4.1.3 X射線繞射儀(X-ray diffraction,XRD)…………………………………..28
3.4.1.4 穿透式電子顯微鏡(Transmission Electron Microscope,TEM)………….29
3.4.1.5 光激螢光(Photoluminescence, PL)……………………………………...30
3.4.2 元件檢測儀器介紹………………………………………………………..30
3.4.2.1 電性量測系統(Electrical measure system) ……………………………….30
3.4.2.2 光響應(Responsivity)量測系統…………………………………………..31
3.4.2.3 場發射量測系統(Field Emission Measurement System)…………………32
3.5 奈米片之光檢測量測流程……………………………………………………..33
第四章 結果與討論…………………………………………………………………35
4.1 奈米片之物理特性分析………………………………………………………..35
4.1.1 奈米片表面形貌分析……………………………………………………..36
4.1.2 能量散佈分析之奈米片…………………………………………………..43
4.1.3 X-ray繞射儀分析奈米片…………………………………………………45
4.1.4 光激發光光譜儀分析奈米片……………………………………………..47
4.1.5 氧化鋁鋅奈米片之穿透式電子顯微鏡分析……………………………..49
4.2 奈米片之電性分析……………………………………………………………..51
4.2.1 奈米片光檢測器分析……………………………………………………..51
4.2.2 光響應量測分析…………………………………………………………..54
4.3 奈米片之電發射分析…………………………………………………………..55
第五章 結論及未來展望……………………………………………………………59
5.1 結論……………………………………………………………………………..59
5.2 未來展望………………………………………………………………………..59
參考文獻……………………………………………………………………………..60
Extended Abstract……………………………………………………………………64
簡歷(CV)……………………………………………………………………………..69


[1]Abarca JF, Casiccia CC. Skin cancer and ultraviolet-B radiation under the Antarctic ozone hole: southern Chile, 1987-2000. Photodermatol Photoimmunol Photomed. 2002-12, 18 (6): 294–302.
[2]Space environment (natural and artificial) — Process for determining solar irradiances, ISO copyright office, Published in Switzerland, 2007.
[3]Sung-Hak Yi, Seung-Kyu Choi, Jae-Min Jang, Jung-A Kim, Woo-Gwang Jung ∗,2007, "Low-temperature growth of ZnO nanorods by chemical bath deposition",Journal of Colloid and Interface Science, 313 pp.705–710, May.
[4]Zhiwu Chen *, Guanghui Zhan, Yongpeng Wu, Xinhua He, Zhenya Lu, 2014, "Sol–gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology", Journal of Alloys and Compounds, 587 pp. 692–697, October.
[5]Satyaprakash Sahoo,∗,z Sujit K. Barik,∗ A. P. S. Gaur, Margarita Correa, Gurpreet Singh,∗∗ R. K. Katiyar, Venkata S. Puli, J. Liriano, and R. S. Katiyar∗∗, 2012, "Microwave Assisted Synthesis of ZnO Nano-Sheets and Their Application in UV-Detector", ECS Journal of Solid State Science and Technology, 1 pp. Q140-Q143, October.
[6]Raluca Savu, Rodrigo Parra, Boˇstjan Janˇcar, Maria Aparecida Zaghete, and Ednan Joanni, 2011, "Influence of Hydrothermal Synthesis Conditions and Device Configuration on the Photoresponse of UV Sensors Based on ZnO Nanorods", IEEE SENSORS JOURNAL, VOL. 11, NO. 9, November.
[7]Myeng Gil Gang1, Seung Wook Shin2;3, K. V. Gurav1, YinBo Wang1, G. L. Agawane1, Jeong Yong Lee2;3, Jong-Ha Moon1, and Jin Hyeok Kim1, 2013, "Studies on the Controlling of the Microstructural and Morphological Properties of Al Doped ZnO Thin Films Prepared by Hydrothermal Method", Japanese Journal of Applied Physics 52 10MA06, October.
[8]J. Lim, K. Shin, H. W. Kim and C. Lee., 2004, “Effect of annealing on the photoluminescence characteristics of ZnO thin films grown on the sapphire substrate by atomic layer epitaxy”Sci. Eng. B107, 301
[9]Jeong et al.,2001,“Electrical and optical properties of ZnO thin film as a function of depostition parameters”,Solar Energy Materials & Solar Cells, 65, 37
[10]B. M. Ataev et al., 1995,“Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD”, Thin Solid Films, 260, 19
[11]Yi Zeng, Liang Qiao, Yifei Bing, Mao Wen, Bo Zou, Weitao Zheng, Tong Zhang, Guangtian Zou.,2012, “Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films”, Sensors and Actuators B: Chemical, 897-902
[12]山崎攻,1997,利用ZnO薄膜製作TV IF用之SAW Filter表面聲波濾波器之材料特輯冬號。
[13]陳隆建,2010,發光二極體之原理與製程,全華圖書,台灣。
[14]馬延麗等編 ,2013,染料敏化太陽能電池︰從理論基礎到技術應用 化學工業出版社,大陸。
[15]H. L. Hartnagel et al., 1995,“Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, P.17
[16]J. Chen and T. Fujita.,2003, “Effects of Annealing on Photoluminescence of ZnO Thin Film Prepared by Vapor Phase Growth”, Jpn. J. Appl. Phys,42, 602
[17]P. Nunes, D. Costa, E, Fortunato and R. Martins.,2002, “Performances presented by zinc oxide thin films deposited by RF magnetron sputtering”, Vacuum, 64, 293
[18]H. L. Hartnagel, A. K. Jain and C. Jagadish.,1995, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, p.17
[19]B. H. Choi and H. B. Im.,1990, Thin Solid Films 193/194, 712
[20]R. Wang, L.H. King and A.W. Sleight, J., 1996, “Highly conducting transparent thin films based on zinc oxide” Mater. Res.11.,1659
[21]H. Hawamoto, R. Konishi, H. Harada and H. Sasakura.,1989, Springer Proceedings in Physics, 314
[22]A. Sarkar, S. Ghosh, S. Chaudhury and A.K. Pal.,1991, “Microstructure of ZnO films produced by reactive DC sputtering technique”, Thin Solid Films, 255.
[23]F.D. Paraguay, J. Morales, W.L. Estrada, E.Andrade, M.M. Yoshida.,2000,Thin Solid Films,16
[24]C.X. Qiu and I. Shih.,1986,Sol. Energy Mater,75
[25]K. Vanheusden et al.,1996, “Mechanisms behind green photoluminescence in ZnO phosphor powders”,J. Appl. Phys, 79, 7983
[26]W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, 2002, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing” Nucl. Instr. And Meth. B, Vol.169,pp.1188
[27]楊尚賢,2006,矽單晶基板上之異質磊晶成長:氮化鈦、氮化鋯、氧化鋅,國立清華大學材料科學與工程學系博士論文。
[28]黃裕銘,2005,ZnO薄膜使用射頻磁控濺鍍法成長之參數研究與探討,南台科技大學電子工程系研究所碩士論文。
[29]施敏原著,2002,半導體元件物理與製作技術(第二版),黃調元譯者,國立交通大學出版社,新竹
[30]白木 靖寬,吉田 真史,2004,薄膜工程學,王建義譯者,全華出版社,台北
[31]J. J. Ebelmen, Ann. Chim. Phys., 1846, 16, 129.
[32]H. Dislich, Angew. Chem., 1971, 10, 363.
[33]G. S. Sur, J. E. Mark, Eur. Polym. J., 1985, 21, 1051.
[34]S. J. Clarson, J. E. Mark, Polym. Commun., 1987, 28, 249.
[35]H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Adv. Mater., 1999, 11, 435.
[36]Y. Takahashi, A. Maeda, K. Kojima, K. Uchida, Luminescence, 2000, 87, 767.
[37]S. H. Jang, M. G. Han, S. S. Im, Synth. Met., 2000, 17, 110.
[38]T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Polym. Degradation Stab., 2000, 69, 317.
[39]M. Yoshida, P. N. Prasad, Appl. Opt., 1996, 35, 1500.
[40]翁維祥,2005,溶膠-凝膠法製備有機/無機奈米複合及超疏水材料之研究,國立中央大學 化學工程與材料工程研究所 博士論文
[41]田民波、顏怡文,2007,薄膜技術與薄膜材,五南,台灣
[42]Brian Chapman,Glow Discharge Process,John Wiley & Sons, Canada,1980.
[43]吳權吉,2005,以反應性磁控濺鍍法製備矽化物氣體阻障層之研究,私立中原大學化學工程學系碩士學位論文
[44]連曼君,2002,以磁控濺鍍法在聚亞醯胺基材上沈積金屬鍍層之性質研究,國立成功大學,材料科學及工程學系碩士論文
[45]王泓羿,2010,利用射頻磁控濺鍍法於聚亞醯胺/三氧化二鋁混成基材沉積氮化矽之氣體阻障層性質研究,國立勤益科技大學 化工與材料工程學系碩士論文
[46]C. Y. Liu, H. Li, W. Jie, X. Z. Zhang, and D. P. Yu., 2006, Mater. Lett., 1394
[47]R.S. Wanger, W.C. Ellis, Appl. Phys. Letters 4, 89(1964).
[48]E.I. Givargizov, J. Cryst. Growth 31, 20(1975).
[49]Vayssieres, L. Adv.,2005,Mater,15, 464
[50]Wei, A.,Sun, X. W.,Xu, C. X.,Dong, Z. L.,Yu, M. B.,Huang, W.,2006,Appl. Phys. Lett. 88, 213102
[51]Zhang, J.Sun, L. Yin, J.,Su, H. Liao, C.Yan, C. Chem.,2002,Mater. 14, 4172.
[52]Yu, A.Qian, J. S.Pan, H. Y. Cui, M.; Xu, M. G.Tu, L.,Chai, Q. L.,Zhou, X. F. Sens.,2011 Actuators, 158, 9
[53]Zhang, H.; Yang, D.; Ji, Y.Ma, X.Xu, J.; Que, D. J. Phys. Chem.,2004, 108 3955.
[54]劉國雄等,2013,工程材料科學(第二版),全華圖書,台灣
[55]Jason B. Baxter and Eray S. Aydil.,2005,APPLIED PHYSICS LETTERS 86, 053114
[56]Y. F. Hsu, Y. Y. Xi, A. B. Djurisic and W. K. Chan.,2008, App. Phys. Let. 92, 133507
[57]HuiminGao, Guojia Fang, Mingjun Wang, Nishuang Liu, Longyan Yuan, Chun Li, Lei Ai, Jing Zhang, Conghua Zhou, Sujuan Wu, Xingzhong Zhao.,2008,Materials Research Bulletin
[58]Matt Law, Lorie Greene, Justin C. Johnson, Richard Saykally and Peidong Yang.,2005,Nature Materials, vol.4
[59]W. Schottky, R. Stromer, and F. Waible, 1931, Hochfrequenztechnik, Vol. 37, pp. 162-165.
[60]S. M. Sze, 1981, “Physics of Semiconductor Devices,2nd”, PP. 744.
[61]李正中 等,2010,光電科技概論,五南
[62]K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, 1993, Semiconductor Devics Modeling for VLSI, Prentice-Hall International Editions.
[63]M. Sze, D. J. Coleman, JR. and A.Loya, 1971, Solid-StateElectronics, Vol. 14, pp. 1209
[64]U. Ozgur,Ya. I. Alivov, C. Liu, A. Teke,M. A. Reshchikov, S. Do?an, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, APPLIED PHYSICS REVIEWS, Vol. 98, No. 041301, 2005.
[65]林凡, “產業用PEN(聚萘二甲酸乙二醇酯)纖維介紹, http://www.filaweaving.org.tw/file/B_F/456/131028220831.pdf.
[66]W. W. Wenas, A. Setiawan, F. Adriyanto and H. Sangian, 1999, IEEE. 99, 322.
[67]D. D.Look, Mater. 2001, Sci. Eng. B. 80, 383.
[68]謝嘉民,賴一凡,林永昌,仿志堯,2005, " 光激發螢光量測的原理、架構及應用", 奈米通訊,第十二卷第二期,頁28~39
[69]鄭偉濱,2009,具有選區成長氧化鋅奈米橋樑之新穎元件的備製與特性研究,國立虎尾科技大學 光電與材料科技研究所碩士論文
[70]Huang, J. R.; Wu, Y. J.; Gu, C. P.; Zhai, M. H.; Yu, K.; Yang, M.; Liu, J. H., 2010, “Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property.”, Sensor. Actuat. B-Chem, Vol. 146, pp. 206-212.
[71]Geun Chul Park, Soo Min Hwang, Jun Hyung Lim and Jinho Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod_p-Si heterojunction diodes prepared using a hydrothermal method”, Nanoscale (2014), 6, 1840–1847
[72]Bera, A.; Basak, D., 2008, “Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires.”, Appl. Phys. Lett., Vol. 93, pp. 053102.
[73]Chang, S. P.; Lu, C. Y.; Chang, S. J.; Chiou, Y. Z.; Hsueh, T. J.; Hsu, C. L. 2011, “Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires.”, IEEE J. Sel. Top. Quant., Vol. 17, pp. 990-995.
[74]Yanbo Li, Florent Della Valle, Mathieu Simonnet, Ichiro Yamada, Jean-Jacques Delaunay, 2009, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires.”, APPLIED PHYSICS LETTERS., Vol. 94, pp. 023110.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊