|
(1)Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry. 1st ed.; McGRAW-HILL: New York, 1982. (2)Levine, I. N. Quantum Chemistry. 5th ed.; Prentice Hall: 2000. (3)Hehre, W. J.; Radom, L.; Sckleyer, P. v. R.; Pople, J. A. ab initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986. (4)McWeeny, R.; Dierksen, G., Self-Consistent Perturbation Theory. II. Extension to Open Shells. J. Chem. Phys. 1968, 49, 4852. (5)Ø. Burrau, Kgl; Danske Videnskab; Selskab. Mat. Fys. Medd. 1927, 7, 14. (6)Heitler, W.; London, F. Z. Physik. 1927, 44, 455. (7)Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864. (8)Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods. 2nd ed.; 1964. (9)Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965, 140, 1133. (10) Kohn,W.; Sham,L.J. Phys.Rev. 1965, 140, 1133. (11) White, J.A.; Bird, D.M. Phys.Rev.B 1994, 50, 4954. (12) Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. (13) Cramer, C. J. Essentials of Computational Chemistry - Theories and Models; John Wiley & Sons: New York, 2002. (14) Stewart, J. J. P., Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209. (15) Stewart, J. J. P., Optimization of parameters for semiempirical methods II. Applications. J. Comput. Chem.1989, 10, 221. (16) Stewart, J. J. P., Reply to ldquo Comments on a comparison of AM1 with the recently developed PM3 methodrdquo. J. Comput. Chem. 1990, 11, 543. (17) Stewart, J. J. P., Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem.1991, 12, 320. (18) Frisch, M. J.; Trucks, G. W.; H. B. Schlegel; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Jr., R. E. S.; J. C. Burant, S. D.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; J. Ochterski, G. A. P., Ayala, P. Y., Cui, Q.; Morokuma, Q.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, ; A. G. Baboul, B. B. S., Liu, G., Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;. Fox, D. J; Keith, T. ; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A.; Replogle, E. S. Gaussian03, C2; Gaussian, Inc: Pittsburgh, 2004. (19) Yung Y. L.; Allen M.; Pinto J. P. Astrophys. J. Suppl.[J]. 1984, 55: 465-506. (20) Yumg Y. L. Lcarus[J]. 1987, 72: 468-472. (21) Bernheim, R. A.; Kempf, R. J.; Humer, P. W.; Skell, P. S. J. Chem.Phys. 1964, 41, 1156. (22) Wasserman, E.; Yager, W. A.; Kuck, V. J. Chem. Phys. Lett. 1970, 7, 409. (23) Dendramis, A.; Leroi, G. E. J. Chem. Phys. 1977, 66, 4334. (24) Laidler, K. J., Theories of Chemical Reaction Rates (McGraw-Hill Series in Advanced Chemistry). 1969, p 234 pp. (25) Eyring, H. Journal of Chemical Physics. 1935, 3, 107-115. (26) Zumdahl, S. S. Chemical Principles, 5th edition; Houghton Mifflin Company: Boston. 2003, p. 736. (27) Atkins, P. W.; De Paula. J. Atkins’ Physical Chemistry, 8th edition; Oxford University Press: New York, 2006, pp. 880-883. (28) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; John Wiley & Sons: New York, 1972. (29) Maercker, A. Org. React. 1965, 14, 270-490. (Review) (30) Carruthers, W. Some Modern Methods of Organic Synthesis, Cambridge University Press, Cambridge, UK, 1971, pp81-90. (ISBN0-521-31117-9) (31) Hoffmann, R. W. Wittig and His Accomplishments: Still Relevant Beyond His 100th Birthday. Angewandte Chemie International Edition. 2001, 40 (8):1411–1416. doi:10.1002/1521-3773(20010417)40:8%3C1411::AIDANIE141 1%3E3.0.CO;2-U (32) Saito, S.; Endo, Y.; Hirota, E. J. Chem. Phys. 1984, 80, 1427. (33) K Kuchitsu(ed) "Structure of Free Polyatomic Molecules- Basic Data" Springer, Berlin, 1998. (34) Herzberg, G. Can J. Phys., 1961, 39, 1511. (35) Jensen, P.; Bunker, P. R. J. Chem. Phys. 1988, 89, 1327. (36) Kuchitsu (ed.), Landolt-Bornstein:Group II: Molecules and Radicals Volume 23: Structure Data for Free Polyatomic Molecules. Springer.Berlin, 1995. (37) Aue, D.H.; Webb, H.M.; Davidson, W.R.; Vidal, M.; Bowers, M.T.; Goldwhite, H.; Vertal, L.E.; Douglas, J.E.; Kollman, P.A.; Kenyon, G.L., J. Heterocycl. Chem. J. Am. Chem. Soc. 1980, 102, 5151. (38) Ming-Der Su. J. Phys. Chem. A 2002, 106, 9563-9568. (39) Hsin-Yi Liao; Ming-Der Su; San-Yan Chu. J. Phys. Chem. B 2001, 105, 9239-9244. (40) NIST-JANAFThermochemical Tables, http://kinetics.nist.gov/janaf/html/C-057.html (41) Vladimir Mokrushin; Vladimir Bedanov; Wing Tsang; Zachariah, Michael R.; Knyazev, Vadim D.; Sean McGivern, W. http://kinetics.nist.gov/ChemRate/ (42) Mass- Transfer Diffusion Coefficients in Binary Systems (p. 864.) (43) Diffusion: Mass Transfer in Fluid Systems. (p. 121.) (44) Eckl, B.; Vrabec, J.; Hasse, H. J. Phys. Chem. B 2008, 112:12710–12721. (45 ) Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A. Modeling chemical mass-transfer in geochemicalprocesses: Thermodynamic relations, conditions of equilibria and numerical algorithms. Amer. J. Sci. 1997, 297, 767-806. (45) Karpov I.K.; Chudnenko K.V.; Kulik D.A.; Avchenko O.V.; Bychinski V.A. Minimization ofGibbs free energy in geochemical systems by convex programming: Geochem. Internat. 2001, 39,1108-1119.
|