跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佳霓
研究生(外文):Li, Chia-Ni
論文名稱:利用理論計算探討CR2 (R = H, F, Cl, Br, CH3, NH2)與環氧乙烷(C2H4O)之反應機制研究
論文名稱(外文):Computational Study of CR2 (R = H, F, Cl, Br, CH3, NH2) Radicals React with C2H4O
指導教授:陳輝龍陳輝龍引用關係
指導教授(外文):Chen, Hui-Lung
口試委員:陳欣聰蔡啟堂
口試委員(外文):Chen, Hsin-TsungTsai, Chi-Tang
口試日期:2015-06-11
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:環氧乙烷取代基
外文關鍵詞:CR2Radicals ReactC2H4O
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
環氧乙烷脫氧合成烯烴(乙烯),在化學上是一個重要的有機合成方法。在近數十年來,已經有許多不同的反應物被應用在此方法上,環氧乙烷脫氧與carbene反應已經有被特別的研究。在我們的研究中,我們對CR2 (where R = H, F, Cl, Br, CH3, NH2) 與環氧乙烷的反應機制進行高層級的ab initio計算並探討其動力學反應速率。其中反應物、中間體、過渡態與產物都使用B3LYP/6-311++G(3df, 2p)的層級進行結構最佳化。
從我們的位能曲面圖來看,所預測的H2C-OC2H4合成物(IM) 是經由過渡態(TS1) ,再進行脫氧過程,之後再經由TS2,最後形成產物乙烯和OCH2。我們也進行了不同取代基R = H, F, Cl, Br, CH3, NH2探討個別的活化能障與反應能量。此外,我們也使用CHAMRATE軟體,藉由過渡態理論與mRRKM理論計算了反應速率。
總速率常數ktotal,在條件760 torr Ar氣壓力及298-3000 K溫度下計算出CF2的k值為k = 3.07×1022 T3.01exp(-11.19 kcal/mol-1/RT) 及C(CH3)2的k值為k = 4.86×1022T3.07exp(-20.62 kcal/mol-1/RT)。此外,在表格中我們針對個別的產物通道提供不同溫度與壓力條件下的反應速率常數k值。

The olefins were synthesis by deoxygenation of ethylene oxide is an important method. Various reagents have been employed for this purpose in the last several decades.In principle, the reaction pathways depended on the nature of the reagent and substrate. However, the deoxygenation of oxiranes with carbenes has been investigations widely.In our study,high level ab initio calculations have been performed to study the mechanisms and Kinetics of the CR2 (where R=H, F, Cl, Br, CH3, NH2) reacted with ethylene oxide. The reactant, intermediates, transition states, and products have been optimized at the B3LYP/6-311++G(3df,2p) level and their corresponding single-point energies also calculated with B3LYP/6-311++G(3df,2p) level. From the calculated potentail energy surface, we have predicted that H2C-OC2H4 complex (IM) formed via passing transition state (TS1), and the deoxygenation process occurs to form ethylene. The substituent group would be effect the reaction barrier and the rate-determing step (RDS). Futermore, we investigated the rate constant by transitionstate thoery and microcanonical Rice-Ramsperger-Kassel-Marcus RRKM with CHEMRATE program. The predicted total rate constant, ktotal, at the 760 torr Ar pressure can be represented by the equations: k=3.07×1022 T3.01exp(-11.19 kcal/mol-1/RT) and k=4.86×1022T3.07exp(-20.62 kcal/mol-1/RT) at T=298-3000Kfor CF2 and C(CH3)2, respectively. In addition, the rate constants for key individual product channels are provided in a table for different temperature and pressure conditions.
謝誌 I
中文摘要 III
Abstract IV
第一章緒論 1
第二章關於理論計算 4
2.1 理論計算 4
2.1.1 全初始(Ab initio)法 5
2.1.2 HF(Hartree-Fock)理論 6
2.2 量子化學 7
2.3 密度泛函理論(Density Functional Theroy,DFT) 8
2.4 B3LYP理論 12
2.5 基底函數組(Basis set) 13
2.5.1 極化函數(Polarization function) 15
2.5.2 擴散函數(Diffuse function) 16
2.6 Gaussian計算 17
2.6.1 單點能量(Single point energy) 17
2.6.2 結構最佳化(Geometry optimization) 18
2.6.3 振動頻率(Frequency) 19
2.7 相關理論 20
2.7.1 過渡態理論(Transition state theory,TST) 20
2.7.2 RRKM理論(Rice-Ramsperger-Kassel-Marcus) 22
2.7.3 Ylide與Wittig Reaction 24
第三章計算方法 25
第四章結果與討論 26
4-1 CR2+C2H4O反應機構之研究 29
4-1.1 拉電子取代基 36
4-1.2 推電子取代基 37
4-1.3 取代基對反應機構的影響 38
4.2 Mulliken DA 的分析 45
4.3 Rate constant calculation 47
第五章結論 52
參考文獻 53

(1)Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry. 1st ed.; McGRAW-HILL: New York, 1982.
(2)Levine, I. N. Quantum Chemistry. 5th ed.; Prentice Hall: 2000.
(3)Hehre, W. J.; Radom, L.; Sckleyer, P. v. R.; Pople, J. A. ab initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986.
(4)McWeeny, R.; Dierksen, G., Self-Consistent Perturbation Theory. II. Extension to Open Shells. J. Chem. Phys. 1968, 49, 4852.
(5)Ø. Burrau, Kgl; Danske Videnskab; Selskab. Mat. Fys. Medd. 1927, 7, 14.
(6)Heitler, W.; London, F. Z. Physik. 1927, 44, 455.
(7)Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, 864.
(8)Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods. 2nd ed.; 1964.
(9)Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1965, 140, 1133.
(10) Kohn,W.; Sham,L.J. Phys.Rev. 1965, 140, 1133.
(11) White, J.A.; Bird, D.M. Phys.Rev.B 1994, 50, 4954.
(12) Becke, A. D., Density-functional thermochemistry. III. The role of
exact exchange. J. Chem. Phys. 1993, 98, 5648.
(13) Cramer, C. J. Essentials of Computational Chemistry - Theories and
Models; John Wiley & Sons: New York, 2002.
(14) Stewart, J. J. P., Optimization of parameters for semiempirical
methods I. Method. J. Comput. Chem. 1989, 10, 209.
(15) Stewart, J. J. P., Optimization of parameters for semiempirical
methods II. Applications. J. Comput. Chem.1989, 10, 221.
(16) Stewart, J. J. P., Reply to ldquo Comments on a comparison of AM1
with the recently developed PM3 methodrdquo. J. Comput. Chem.
1990, 11, 543.
(17) Stewart, J. J. P., Optimization of parameters for semiempirical
methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comput. Chem.1991, 12, 320.
(18) Frisch, M. J.; Trucks, G. W.; H. B. Schlegel; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Jr., R. E. S.; J. C. Burant, S. D.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; J. Ochterski, G. A. P., Ayala, P. Y., Cui, Q.; Morokuma, Q.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, ; A. G. Baboul, B. B. S., Liu, G., Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;. Fox, D. J; Keith, T. ; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Pople, J. A.; Replogle, E. S. Gaussian03, C2; Gaussian, Inc: Pittsburgh, 2004.
(19) Yung Y. L.; Allen M.; Pinto J. P. Astrophys. J. Suppl.[J]. 1984, 55:
465-506.
(20) Yumg Y. L. Lcarus[J]. 1987, 72: 468-472.
(21) Bernheim, R. A.; Kempf, R. J.; Humer, P. W.; Skell, P. S. J.
Chem.Phys. 1964, 41, 1156.
(22) Wasserman, E.; Yager, W. A.; Kuck, V. J. Chem. Phys. Lett. 1970,
7, 409.
(23) Dendramis, A.; Leroi, G. E. J. Chem. Phys. 1977, 66, 4334.
(24) Laidler, K. J., Theories of Chemical Reaction Rates (McGraw-Hill
Series in Advanced Chemistry). 1969, p 234 pp.
(25) Eyring, H. Journal of Chemical Physics. 1935, 3, 107-115.
(26) Zumdahl, S. S. Chemical Principles, 5th edition; Houghton Mifflin
Company: Boston. 2003, p. 736.
(27) Atkins, P. W.; De Paula. J. Atkins’ Physical Chemistry, 8th edition;
Oxford University Press: New York, 2006, pp. 880-883.
(28) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; John
Wiley & Sons: New York, 1972.
(29) Maercker, A. Org. React. 1965, 14, 270-490. (Review)
(30) Carruthers, W. Some Modern Methods of Organic Synthesis,
  Cambridge University Press, Cambridge, UK, 1971, pp81-90.
(ISBN0-521-31117-9)
(31) Hoffmann, R. W. Wittig and His Accomplishments: Still Relevant
  Beyond His 100th Birthday. Angewandte Chemie International     Edition. 2001, 40 (8):1411–1416.
doi:10.1002/1521-3773(20010417)40:8%3C1411::AIDANIE141
1%3E3.0.CO;2-U
(32) Saito, S.; Endo, Y.; Hirota, E. J. Chem. Phys. 1984, 80, 1427.
(33) K Kuchitsu(ed) "Structure of Free Polyatomic Molecules- Basic
Data" Springer, Berlin, 1998.
(34) Herzberg, G. Can J. Phys., 1961, 39, 1511.
(35) Jensen, P.; Bunker, P. R. J. Chem. Phys. 1988, 89, 1327.
(36) Kuchitsu (ed.), Landolt-Bornstein:Group II: Molecules and Radicals
  Volume 23: Structure Data for Free Polyatomic Molecules.
  Springer.Berlin, 1995.
(37) Aue, D.H.; Webb, H.M.; Davidson, W.R.; Vidal, M.; Bowers,    
  M.T.; Goldwhite, H.; Vertal, L.E.; Douglas, J.E.; Kollman,  
  P.A.; Kenyon, G.L., J. Heterocycl. Chem. J. Am. Chem. Soc. 1980,
  102, 5151.
(38) Ming-Der Su. J. Phys. Chem. A 2002, 106, 9563-9568.
(39) Hsin-Yi Liao; Ming-Der Su; San-Yan Chu. J. Phys. Chem.
B 2001, 105, 9239-9244.
(40) NIST-JANAFThermochemical Tables,
http://kinetics.nist.gov/janaf/html/C-057.html
(41) Vladimir Mokrushin; Vladimir Bedanov; Wing Tsang; Zachariah,
Michael R.; Knyazev, Vadim D.; Sean McGivern, W.
http://kinetics.nist.gov/ChemRate/
(42) Mass- Transfer Diffusion Coefficients in Binary Systems (p. 864.)
(43) Diffusion: Mass Transfer in Fluid Systems. (p. 121.)
(44) Eckl, B.; Vrabec, J.; Hasse, H. J. Phys. Chem. B 2008,  
112:12710–12721.
(45 ) Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A. Modeling
  chemical mass-transfer in geochemicalprocesses: Thermodynamic
relations, conditions of equilibria and numerical algorithms. Amer. J.
Sci. 1997, 297, 767-806.
(45) Karpov I.K.; Chudnenko K.V.; Kulik D.A.; Avchenko O.V.;
Bychinski V.A. Minimization ofGibbs free energy in
geochemical systems by convex programming: Geochem. Internat.
2001, 39,1108-1119.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top