跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 15:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許瑋倫
研究生(外文):Shiu, Wei Luen
論文名稱:硫醇化矽溶膠-凝膠/氧化石墨烯複合金奈米粒子材料的製備及應用於濕度感測器
論文名稱(外文):Flexible Humidity Sensors Based on Au Nanoparticles- Graphene Oxide- Thiolated Silica Sol-Gel Composite Materials.
指導教授:蘇平貴蘇平貴引用關係
指導教授(外文):Su, Pi Guey
口試委員:張宏維呂家榮
口試委員(外文):Chang, Hung WeiLu, Chia Jung
口試日期:2015-06-26
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:自組裝法溶膠-凝膠技術可撓式濕度感測器氧化石墨烯金奈米粒子
外文關鍵詞:Self-assemblySol-GelFlexible Humidity SensorGraphene OxideGold Nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用自組裝法和溶膠-凝膠技術製備(3-巰基丙基)-3甲氧基矽烷(MPTMOS)複合金奈米粒子(AuNPs)/氧化石墨烯(GO)之可撓式濕度感測器。
首先,將內含GO的MPTMOS水解為sol-gel溶液drop coating於聚酯(PET)塑膠基板上的金電極,再將AuNPs自組裝於GO/MPTMOS sol-gel巰醇官能基上,即完成本實驗之可撓式濕度感測器製備。
再利用紫外光可見光光譜儀(UV-vis)測定所製備AuNPs,而感測膜AuNPs/GO/MPTMOS sol-gel薄膜的表面特徵則是利用原子力顯微鏡(AFM)、掃描式電子顯微鏡/電子散佈光譜(SEM/EDS)來分析其表面結構。並探討AuNPs和GO添加量對其濕度感測元件的可撓性影響及感測膜AuNPs/GO/MPTMOS sol-gel薄膜的電性和濕度感應特性。由本研究結果得知,添加9.0 wt% GO的AuNPs/GO/MPTMOS sol-gel薄膜其有最佳的可撓性、感度、良好的線性及長期穩定度,並在進一步探討AuNPs/9.0 wt% GO/MPTMOS sol-gel之感測元件其頻率變化、環境溫度及反應和恢復時間對於阻抗變化的影響。最後利用阻抗頻譜圖來說明本實驗之AuNPs/GO/MPTMOS sol-gel薄膜的反應機制。

Novel flexible impedance-type humidity sensors that were based on gold nanoparticles (AuNPs) and graphene oxide (GO) were fabricated by a combination of self-assembly and the sol–gel technique. A hydrolyzed 3-mercaptopropyltrimethoxysilane (MPTMOS) sol–gel solution that contained GO was first dropped on to the surface of a pair of comb-like Au electrodes on a polyethylene terephthalate (PET) substrate, and then AuNPs were assembled onto the thiol groups of the sol–gel network. The formed AuNPs were characterized by UV-Vis spectroscopy. The microstructure of the AuNPs/GO/MPTMOS sol-gel film was analyzed by atomic force microscope (AFM) and scanning electron microscopy (SEM). The effect of the AuNPs and the amount of GO added on the flexibility, electrical and humidity sensing properties of the AuNPs/GO/MPTMOS sol-gel films on a PET substrate were investigated. The sensor that was made from the AuNPs/GO/MPTMOS sol-gel film with 9.0 wt% added GO exhibited the greatest flexibility, sensitivity, linearity and long-term stability. The effects of applied frequency, ambient temperature, response and recovery time on the impedance of the flexible humidity sensor were also investigated. The sensing mechanism of the AuNPs/GO/MPTMOS sol-gel film was explained with reference to impedance
plots.

總 目 錄
摘要 I
Abstract II
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 理論基礎與材料介紹 4
2-1濕度表示法 4
2-2濕度感測器之感測特徵 5
2-3濕度感測器之感測特性 6
2-4濕度感測器種類 7
2-5可撓式基材之探究 8
2-6石墨與石墨烯之歷史與特性 11
2-6-1氧化石墨烯製備方法 12
2-7 溶膠-凝膠法介紹 13
2-7-1溶膠-凝膠法之應用 14
2-8 有機矽氧烷化合物 15
2-8-1 矽氧烷簡介 15
2-8-2 矽氧烷特性與結構 15
2-8-3 pH值對矽氧烷聚合物反應的影響 17
2-8-4 (3-巰基丙基)-3甲氧基矽烷(MPTMOS)之介紹與應用 19
第三章 實驗設計與分析 21
3-1 實驗藥品 21
3-2 實驗器材與儀器設備 22
3-2-1實驗器材 22
3-2-2儀器設備 24
3-2-3電性測量 25
3-3 實驗流程與步驟 29
3-3-1塑膠基板之前處理 32
3-3-2氧化石墨烯複合材料之製備 32
3-3-3(3-巰基丙基)-3甲氧基矽烷溶膠-凝膠溶液之製備 33
3-3-4金奈米粒子複合材料之製備 33
3-3-5可撓式濕度感測元件之製備 34
第四章 結果與討論 35
4-1可撓式濕度感測元件材料特性之探討 35
4-1-1可撓式濕度感測元件之製備 35
4-1-2 AuNPs/GO/MPTMOS sol-gel奈米複合材料薄膜的製備 36
4-1-3 AuNPs/GO/MPTMOS sol-gel與金奈米粒子表面特徵分析探討 36
4-1-4 感測元件表面結構分析探討 38
4-2可撓式濕度感測元件之電性及濕度特性探討 41
4-2-1可撓式濕度感測元件之電性探討 41
4-2-2可撓式濕度感測元件之可撓性探討 43
4-2-3可撓式濕度感測元件之長期穩定性探討 44
4-2-4可撓式濕度感測元件之材料薄膜厚度探討 45
4-3可撓式濕度感測元件之感濕基本特性探討 46
4-3-1可撓式濕度感測元件之感濕線性及濕滯效應探討 46
4-3-2可撓式濕度感測元件之溫度係數影響濕度感應特性探討 48
4-3-3可撓式濕度感測元件之外加頻率影響濕度感應特性探討 49
4-3-4可撓式濕度感測元件之反應時間與恢復時間探討 50
4-4可撓式濕度感測元件之感測特性比較 51
4-5可撓式濕度感測元件之傳導機制探討 52
第五章 結論 55
參考文獻 56









表目錄
表2-1濕度表示法之應用特性 4
表2-2濕度感測器之特性參數 6
表2-3濕度感測器類型與測量原理 7
表2-4 軟性、硬性基材優缺點比較 9
表2-5 近三年可撓性感測器相關文獻表 10
表2-6 溶膠-凝膠法應用領域 14
表2-7 矽氧烷主要化學鍵之特性及應用 16
表4-1感測元件之感度與線性探討 35
表4-2感測元件之不同材料薄膜厚度對濕度感應特性的探討 45
表4-3可撓式濕度感測器與先前文獻之比較 51

















圖目錄
圖2-1 工研院IEK全國軟性電子市場產值 9
圖2-2石墨結構示意圖 11
圖2-3氧化石墨烯結構 12
圖2-4不同pH值條件下矽氧烷水解及縮合相對速率 19
圖3-1 可撓式基板 23
圖3-2 可撓式基板規格 23
圖3-3(a)分流式濕度產生系統示意圖 25
圖3-3(b)分流式濕度產生系統裝置圖 26
圖3-4 質量流量控制器 27
圖3-5 電阻電容電感測試儀 27
圖3-6 標準溫/濕度計 28
圖3-7 可撓式濕度感測元件製備實驗流程 30
圖3-8 結合溶膠-凝膠法自組裝上AuNPs技術固定可撓式濕度感測元件製作流程 31
圖4-1 (a)AuNPs (b)AuNPs/GO/MPTMOS sol-gel之UV-Vis圖譜 37
圖4-2 (a) MPTMOS sol-gel, (b) 9.0 wt% GO/MPTMOS sol-gel 39
(c) AuNPs/9.0 wt% GO/MPTMOS sol-gel 之AFM圖 39
圖4-3 (a) 1.0 wt% GO/MPTMOS sol-gel (b) 9.0 wt% GO/MPTMOS sol-gel (c) AuNPs/1.0 wt% GO/MPTMOS sol-gel (d) AuNPs/9.0 wt% GO/MPTMOS sol-gel之SEM圖(e) AuNPs/9.0 wt% GO/MPTMOS sol-gel 之EDS光譜圖 40
圖4-4濕度範圍20%~90%RH各材料之濕度特性比較圖(1.0V、1KHz、25C) 42
圖4-5各材料在基板上的可撓性比較圖(1.0V、1KHz、25C) 43
圖4-6 為不同濃度GO的長期穩定性比較圖(1.0V、1KHz、25C) 44
圖4-7 為AuNPs/9.0 wt%GO/MPTMOS sol-gel濕度感測元件於1.0 V、1 kHz及25C下阻抗相對濕度之感應線性 47
圖4-8 為AuNPs/9.0 wt%GO/MPTMOS sol-gel濕度感測元件在1.0 V、1 kHz、改變溫度下阻抗對相對濕度之感應線性 48
圖4-9 為AuNPs/9.0 wt%GO/MPTMOS sol-gel濕度感測元件在1.0 V、25C、改變頻率下阻抗對相對濕度之感應線性 49
圖4-10 為AuNPs/9.0 wt%GO/MPTMOS sol-gel濕度感測元件反應及恢復時間之測試(1.0 V、1 kHz、25C) 50
圖4-11 為AuNPs/9.0 wt%GO/MPTMOS sol-gel濕度感測元件複合阻抗圖(a)低濕下特性(30% RH) (b)高濕下特性(80% RH) (c)元件的等效電路路徑(1.0 V、25C及頻率範圍50 Hz~100 kHz下) 54


參考文獻
[1]E. Abad, S. Zampolli, S. Macro, A. Scorzoni, B. Mazzolai, A. Juarros, D. Gómez, I. Elmi, G. C. Cardinali, J. M. Gómez, F. Palacio, M. Cicioni, A. Mondini, T. Becker, I. Sayhan, Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic, Sens. Actuators B 127 (2007) 2-7.
[2]A. Vergara, E. Llobet, J. L. Ramírez, P. Ivanov, L. Fonseca, S. Zampolli, A. Scorzoni, T. Becker, S. Marco, J. Wöllenstein, An RFID reader with onboard sensing capability for monitoring fruit quality, Sens. Actuators B 127 (2007) 143-149.
[3]M. C. Mcalpine, H. Ahmad, D. Wang, J. R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nat. Mater. 16 (2007) 379-384.
[4]Y. Sun, H. H. Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818-2823.
[5]A. Oprea, N. Bârsan, U. Weimar, M.-L. Bauersfeld, D. Ebling, J. Wöllenstein, Capacitive humidity sensors on flexible RFID labels, Sens. Actuators B 132 (2008) 404-410.
[6]E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra thin flexible capacitive humidity sensor, Sens. Actuators B 143 (2009) 302-307.
[7]P. G. Su, C. S. Wang, Novel flexible resistive-type humidity sensor, Sens. Actuators B 123 (2007) 1071-1076.
[8]P. G. Su, J. Y. Tseng, Y. C. Huang,H. H. Pan, P. C. Li, Novel fully transparent and flexible humidity sensor, Sens. Actuators B 137 (2009) 496-500.
[9]P. G. Su, C. P. Wang, Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly- [3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials, Sens. Actuators B 129 (2008) 538-543.
[10]Sakai, Y., Design of polymer electrolytes-based humidity sensors, Sensor Tech 2 (1992) 117-132.
[11]K. Rubner, D. Balkose, and E. Robens, “Methods of humidity determination Part I: Hygrometry,”Journal of Thermal Analysis and Calorimetry 94 (2008) 669-673.
[12]工業材料雜誌,338期,軟性電子之市場發展現況與趨勢。
[13]A. Chahadih, P. Y. Cresson, Z. Hamouda, S. Gu, C. Mismer, T. Lasri, Microwave/microfluidic sensor fabricated on a flexible kaptonsubstrate for complex permittivity characterization of liquids, Sens. Actuators A 229 (2015) 128-135.
[14]P. G. Su, C. F. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate, Sens. Actuators B 200 (2014) 9-18.
[15]P. G. Su, Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide, Sens. Actuators B 190 (2014) 865-872.
[16]S. Claramunt, Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres, Sens. Actuators B 187 (2013) 401-406.
[17]E. Skotadis, D. Mousadakos, K. Katsabrokou, S. Stathopoulos, D. Tsoukalas, Flexible polyimide chemical sensors using platinum nanoparticles, Sens. Actuators B 189 (2013) 106-112.
[18]O. Monereo, Flexible sensor based on carbon nanofibers with multifunctional sensing features, Talanta 107 (2013) 239-247.
[19]G. S. Duesberg, Highly sensitive transparent and flexible gas sensors based on goldnanoparticle decorated carbon nanotubes, Sens. Actuators B 188 (2013) 571-575.
[20]M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, J. M. Guilemany, New procedures for building-up the active layer of gas sensors on flexible polymers, Surface and Coatings Tech. 253 (2013) 848-852.
[21]U. Altenberenda, Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability, Sens. Actuators B 187 (2013) 280-287.
[22]G. S. Chung, A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape, Sens. Actuators B 185 (2013) 777-784.
[23]蕭慕柔,電解剝落法之石墨表面性質探討,國立中央大學化學工程與材料工程學系(2012).
[24]林永昌、呂俊頡、鄭碩方、邱博文,石墨烯之電子能帶特性與其元件應用,物裡雙月刊 33卷2期(2011).
[25]G. Shi, Functional Composite Materials Based on Chemically Converted Graphene, Advanced Materials 23 (2011) 1089-1115.
[26]H. Dislich, New Routes to Multicomponent Oxide Glasses, Angew. Chem. 10 (1971) 363-370.
[27]G. S. Sur, J. E. Mark, Elastomeric networks cross-linked by silica or titania fillers, Eur. Polym. J. 21 (1985) 1051-1052.
[28]S. J. Clarson, J. E. Mark, Cyclic polysiloxanes: 2. Neutron scattering from poly(phenylmethylsiloxane), Polym. Commun. 28 (1987) 189-192.
[29]H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Bacteriorhodopsin Thin-Film Assemblies—Immobilization, Properties, and Applications, Adv. Mater. 11 (1999) 435-446.
[30]Y. Takahashi, A. Maeda, K. Kojima, K. Uchida, Luminescence of dyes doped in a sol-gel coating film, Luminescence 87 (2000) 767-769.
[31]S. H. Jang, M. G. Han, S. S. Im, Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol–gel process, Synth. Met. 110 (2000) 17-23.
[32]T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Organic–inorganic hybrid materials 7: characterization and degradation of polyvinylimidazole–silica hybrids, Polym. Degradation Stab. 69 (2000) 317-322.
[33]M. Yoshida, P. N. Prasad, Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials, Appl. Opt. 35 (1996) 1500-1506.
[34]廖建勳,工業材料,第125 期 (1997) 110。
[35]R. Reisfeld, C. K. Jorgensen, Chemistry Spectroscopy and Applications of Sol-Gel Glasses, Springer-Verlag, Berlin 77 (1992).
[36]D. A. Loy, K. J. Shea, Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials, Chem. Rev. 95 (1995) 1431-1442.
[37]B. M. Novak, Hybrid nanocomposite materials - between inorganic glasses and organic polymers, Adv. Mater. 5 (1993) 422.
[38]G. Philipp, H. Schmidt, New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process, J. Non-Cryst. Solids 63 (1984) 283-292.
[39]R. J. R. Uhlhorn, K. Keizer, A. J. Burggraaf, Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation , J. Membrane Sci. 66 (1992) 259-269.
[40]K. Nakanishi, H. Minakuchi, N. Soga, Double pore silica gel monolith applied to liquid chromatography, J. Sol-Gel Sci. Tech. 8 (1997) 547-552.
[41]D. R. Uhlmann, T. Suratwala, K. Davidson, J. M. Boulton, G Teowee, Sol—gel derived coatings on glass, J. Non-Cryst. Solids 218 (1997) 113-122.
[42]D. R. Uhlmann, G. P. Rajendran, Sol-gel synthesis of optical thin films and coatings, SPIE Proc. 1328 (1990) 270.
[43]B. E. Yoldas, Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings, J. Sol-Gel Sci. Tech. 1 (1993) 65-77.
[44]J. Y. Ying, C. P. Mehnert, M. S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew. Chem. Int. Ed. Engl. 38 (1999) 56-77.
[45]A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 97 (1997) 2373-2420.
[46]P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 368 (1994) 321-323.
[47]S. Krijnen, H. C. L. abbenhuis, R. W. J. Hansen, J. H. C. van Hooff, R. A. van Santen, Solid-Phase Immobilization of a New Epoxidation Catalyst, Angew. Chem. Int. Ed. Engl. 37 (1998) 356-358.
[48]U. Schubert, N. Husing, Synthesis of inorganic materials, chapter 4 (2000).
[49]R. A. Assink, B. D. Kay, Sol–Gel Kinetics I. Functional Group Kinetics, J. Non-Cryst. Solids 99 (1988) 359-370.
[50]R. K. Iler, The Chemistry of Silica (1979).
[51] L. S. Dent-Glasser, E. E. Lachowski, Silicate species in solution. Part 1. Experimental observations. J. Chem. Soc. Dalton Trans. 3 (1980) 393-398.
[52]D. Avnir, V. R. Kaufman, Alcohol is an unnecessary additive in the silicon alkoxide sol-gel process, J. Non-Cryst. Solids 92 (1987) 180-182.
[53]J. Y. Tseng, M. H. Lin, L. K. Chau, Preparation of colloidal gold multilayers with 3-(merecaptopropyl)trimethoxysilane as a linker molecule, Colloid Surf. A-Physicochem. Eng. Asp. 182 (2001) 239-245.
[54]C. J. Briker, G. W. Scherer, The Physics and chemistry of Sol-Gel Processing, Sol-gel Science 3 (1990) 117-151.
[55]P. G. Su, I. C. Chen, R. J. Wu, Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity, Anal. Chem. 449 (2001) 103-109.
[56]K. W. Park, J. H. Jung, Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites, Journal of Power Sources 199 (2012) 379–385.
[57]B. Wang, B. Li, Q. Deng, S. Dong, Electrocatalytic Properties of Nitrous Oxide and Its Voltammetric Detection at Palladium Electrodeposited on a Glassy Carbon Electrode, Anal. Chem. 70 (1998) 3170–3174.
[58]J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong, Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material, Anal. Chem. 74 (2002) 2217–2223.
[59]H. D. Hill, C. A. Mirkin, The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange, Nature Publishing Group 1 (2006) 324-336.
[60]F. Wu, Z. Hu, J. Xu, Y. Tian, L. Wang, Y. Xian, L. Jin, Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: characterization, direct electrochemistry, redox thermodynamics and biosensing, Electrochim. Acta 53 (2008) 8238–8244.
[61]S. Bharathi, M. Nogami, S. Ikeda, Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles, Langmuir 17 (2001) 1-4.
[62]S. K. Ghost, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications, Chem. Rev. 107 (2007) 4797-4862.
[63]A. N. Shipway, M. Lahav, R. Gabai, I. Willner, Investigations into the electrostatically induced aggregation of Au nanoparticles, Langmuir 16 (2000) 8789-8795.
[64]L. R. Allain, K. Sorasaenee, Z. Xue, Doped thin-film sensors via a sol-gel process for high-acidity determination, Anal. Chem. 69 (1997) 3076-3080.
[65]P. G. Su, H. C. Hsu, C. Y. Liu, Layer-by-layer anchoring of copolymer of methyl methacrylate and [3-(methacrylamino)propyl] trimethyl ammonium chloride to gold surface on flexible substrate for sensing humidity, Sens. Actuators B 178 (2013) 289-295.
[66]C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, J. R. Stetter, Humidity sensing properties of Nafion and solgel derived SiO2/Nafion composite thin films, Sens. Actuators B 40 (1997) 217-222.
[67]G. Casalbore-Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, M. Ling, Investigations on the ion transport mechanism in conduction polymer films, Solid State Ionics 131 (2000) 311-321.
[68]J. Wang, Q. Lin, T. Zhang, R. Zhou, B. Xu, Humidity sensor based on composite material of nano-BaTiO3 and polymer RMX, Sens. Actuators B 81 (2002) 248-253.
[69]J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang, Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Mater. Chem. Phys. 78 (2003) 746-750.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊