|
參考文獻 [1]E. Abad, S. Zampolli, S. Macro, A. Scorzoni, B. Mazzolai, A. Juarros, D. Gómez, I. Elmi, G. C. Cardinali, J. M. Gómez, F. Palacio, M. Cicioni, A. Mondini, T. Becker, I. Sayhan, Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic, Sens. Actuators B 127 (2007) 2-7. [2]A. Vergara, E. Llobet, J. L. Ramírez, P. Ivanov, L. Fonseca, S. Zampolli, A. Scorzoni, T. Becker, S. Marco, J. Wöllenstein, An RFID reader with onboard sensing capability for monitoring fruit quality, Sens. Actuators B 127 (2007) 143-149. [3]M. C. Mcalpine, H. Ahmad, D. Wang, J. R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nat. Mater. 16 (2007) 379-384. [4]Y. Sun, H. H. Wang, High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818-2823. [5]A. Oprea, N. Bârsan, U. Weimar, M.-L. Bauersfeld, D. Ebling, J. Wöllenstein, Capacitive humidity sensors on flexible RFID labels, Sens. Actuators B 132 (2008) 404-410. [6]E. Zampetti, S. Pantalei, A. Pecora, A. Valletta, L. Maiolo, A. Minotti, A. Macagnano, G. Fortunato, A. Bearzotti, Design and optimization of an ultra thin flexible capacitive humidity sensor, Sens. Actuators B 143 (2009) 302-307. [7]P. G. Su, C. S. Wang, Novel flexible resistive-type humidity sensor, Sens. Actuators B 123 (2007) 1071-1076. [8]P. G. Su, J. Y. Tseng, Y. C. Huang,H. H. Pan, P. C. Li, Novel fully transparent and flexible humidity sensor, Sens. Actuators B 137 (2009) 496-500. [9]P. G. Su, C. P. Wang, Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly- [3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials, Sens. Actuators B 129 (2008) 538-543. [10]Sakai, Y., Design of polymer electrolytes-based humidity sensors, Sensor Tech 2 (1992) 117-132. [11]K. Rubner, D. Balkose, and E. Robens, “Methods of humidity determination Part I: Hygrometry,”Journal of Thermal Analysis and Calorimetry 94 (2008) 669-673. [12]工業材料雜誌,338期,軟性電子之市場發展現況與趨勢。 [13]A. Chahadih, P. Y. Cresson, Z. Hamouda, S. Gu, C. Mismer, T. Lasri, Microwave/microfluidic sensor fabricated on a flexible kaptonsubstrate for complex permittivity characterization of liquids, Sens. Actuators A 229 (2015) 128-135. [14]P. G. Su, C. F. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate, Sens. Actuators B 200 (2014) 9-18. [15]P. G. Su, Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide, Sens. Actuators B 190 (2014) 865-872. [16]S. Claramunt, Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres, Sens. Actuators B 187 (2013) 401-406. [17]E. Skotadis, D. Mousadakos, K. Katsabrokou, S. Stathopoulos, D. Tsoukalas, Flexible polyimide chemical sensors using platinum nanoparticles, Sens. Actuators B 189 (2013) 106-112. [18]O. Monereo, Flexible sensor based on carbon nanofibers with multifunctional sensing features, Talanta 107 (2013) 239-247. [19]G. S. Duesberg, Highly sensitive transparent and flexible gas sensors based on goldnanoparticle decorated carbon nanotubes, Sens. Actuators B 188 (2013) 571-575. [20]M. Gardon, O. Monereo, S. Dosta, G. Vescio, A. Cirera, J. M. Guilemany, New procedures for building-up the active layer of gas sensors on flexible polymers, Surface and Coatings Tech. 253 (2013) 848-852. [21]U. Altenberenda, Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability, Sens. Actuators B 187 (2013) 280-287. [22]G. S. Chung, A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape, Sens. Actuators B 185 (2013) 777-784. [23]蕭慕柔,電解剝落法之石墨表面性質探討,國立中央大學化學工程與材料工程學系(2012). [24]林永昌、呂俊頡、鄭碩方、邱博文,石墨烯之電子能帶特性與其元件應用,物裡雙月刊 33卷2期(2011). [25]G. Shi, Functional Composite Materials Based on Chemically Converted Graphene, Advanced Materials 23 (2011) 1089-1115. [26]H. Dislich, New Routes to Multicomponent Oxide Glasses, Angew. Chem. 10 (1971) 363-370. [27]G. S. Sur, J. E. Mark, Elastomeric networks cross-linked by silica or titania fillers, Eur. Polym. J. 21 (1985) 1051-1052. [28]S. J. Clarson, J. E. Mark, Cyclic polysiloxanes: 2. Neutron scattering from poly(phenylmethylsiloxane), Polym. Commun. 28 (1987) 189-192. [29]H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Bacteriorhodopsin Thin-Film Assemblies—Immobilization, Properties, and Applications, Adv. Mater. 11 (1999) 435-446. [30]Y. Takahashi, A. Maeda, K. Kojima, K. Uchida, Luminescence of dyes doped in a sol-gel coating film, Luminescence 87 (2000) 767-769. [31]S. H. Jang, M. G. Han, S. S. Im, Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol–gel process, Synth. Met. 110 (2000) 17-23. [32]T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Organic–inorganic hybrid materials 7: characterization and degradation of polyvinylimidazole–silica hybrids, Polym. Degradation Stab. 69 (2000) 317-322. [33]M. Yoshida, P. N. Prasad, Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/SiO2 composite materials, Appl. Opt. 35 (1996) 1500-1506. [34]廖建勳,工業材料,第125 期 (1997) 110。 [35]R. Reisfeld, C. K. Jorgensen, Chemistry Spectroscopy and Applications of Sol-Gel Glasses, Springer-Verlag, Berlin 77 (1992). [36]D. A. Loy, K. J. Shea, Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials, Chem. Rev. 95 (1995) 1431-1442. [37]B. M. Novak, Hybrid nanocomposite materials - between inorganic glasses and organic polymers, Adv. Mater. 5 (1993) 422. [38]G. Philipp, H. Schmidt, New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process, J. Non-Cryst. Solids 63 (1984) 283-292. [39]R. J. R. Uhlhorn, K. Keizer, A. J. Burggraaf, Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation , J. Membrane Sci. 66 (1992) 259-269. [40]K. Nakanishi, H. Minakuchi, N. Soga, Double pore silica gel monolith applied to liquid chromatography, J. Sol-Gel Sci. Tech. 8 (1997) 547-552. [41]D. R. Uhlmann, T. Suratwala, K. Davidson, J. M. Boulton, G Teowee, Sol—gel derived coatings on glass, J. Non-Cryst. Solids 218 (1997) 113-122. [42]D. R. Uhlmann, G. P. Rajendran, Sol-gel synthesis of optical thin films and coatings, SPIE Proc. 1328 (1990) 270. [43]B. E. Yoldas, Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings, J. Sol-Gel Sci. Tech. 1 (1993) 65-77. [44]J. Y. Ying, C. P. Mehnert, M. S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew. Chem. Int. Ed. Engl. 38 (1999) 56-77. [45]A. Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev. 97 (1997) 2373-2420. [46]P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 368 (1994) 321-323. [47]S. Krijnen, H. C. L. abbenhuis, R. W. J. Hansen, J. H. C. van Hooff, R. A. van Santen, Solid-Phase Immobilization of a New Epoxidation Catalyst, Angew. Chem. Int. Ed. Engl. 37 (1998) 356-358. [48]U. Schubert, N. Husing, Synthesis of inorganic materials, chapter 4 (2000). [49]R. A. Assink, B. D. Kay, Sol–Gel Kinetics I. Functional Group Kinetics, J. Non-Cryst. Solids 99 (1988) 359-370. [50]R. K. Iler, The Chemistry of Silica (1979). [51] L. S. Dent-Glasser, E. E. Lachowski, Silicate species in solution. Part 1. Experimental observations. J. Chem. Soc. Dalton Trans. 3 (1980) 393-398. [52]D. Avnir, V. R. Kaufman, Alcohol is an unnecessary additive in the silicon alkoxide sol-gel process, J. Non-Cryst. Solids 92 (1987) 180-182. [53]J. Y. Tseng, M. H. Lin, L. K. Chau, Preparation of colloidal gold multilayers with 3-(merecaptopropyl)trimethoxysilane as a linker molecule, Colloid Surf. A-Physicochem. Eng. Asp. 182 (2001) 239-245. [54]C. J. Briker, G. W. Scherer, The Physics and chemistry of Sol-Gel Processing, Sol-gel Science 3 (1990) 117-151. [55]P. G. Su, I. C. Chen, R. J. Wu, Use of poly(2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity, Anal. Chem. 449 (2001) 103-109. [56]K. W. Park, J. H. Jung, Spectroscopic and electrochemical characteristics of a carboxylated graphene–ZnO composites, Journal of Power Sources 199 (2012) 379–385. [57]B. Wang, B. Li, Q. Deng, S. Dong, Electrocatalytic Properties of Nitrous Oxide and Its Voltammetric Detection at Palladium Electrodeposited on a Glassy Carbon Electrode, Anal. Chem. 70 (1998) 3170–3174. [58]J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong, Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material, Anal. Chem. 74 (2002) 2217–2223. [59]H. D. Hill, C. A. Mirkin, The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange, Nature Publishing Group 1 (2006) 324-336. [60]F. Wu, Z. Hu, J. Xu, Y. Tian, L. Wang, Y. Xian, L. Jin, Immobilization of horseradish peroxidase on self-assembled (3-mercaptopropyl)trimethoxysilane film: characterization, direct electrochemistry, redox thermodynamics and biosensing, Electrochim. Acta 53 (2008) 8238–8244. [61]S. Bharathi, M. Nogami, S. Ikeda, Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles, Langmuir 17 (2001) 1-4. [62]S. K. Ghost, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications, Chem. Rev. 107 (2007) 4797-4862. [63]A. N. Shipway, M. Lahav, R. Gabai, I. Willner, Investigations into the electrostatically induced aggregation of Au nanoparticles, Langmuir 16 (2000) 8789-8795. [64]L. R. Allain, K. Sorasaenee, Z. Xue, Doped thin-film sensors via a sol-gel process for high-acidity determination, Anal. Chem. 69 (1997) 3076-3080. [65]P. G. Su, H. C. Hsu, C. Y. Liu, Layer-by-layer anchoring of copolymer of methyl methacrylate and [3-(methacrylamino)propyl] trimethyl ammonium chloride to gold surface on flexible substrate for sensing humidity, Sens. Actuators B 178 (2013) 289-295. [66]C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, J. R. Stetter, Humidity sensing properties of Nafion and solgel derived SiO2/Nafion composite thin films, Sens. Actuators B 40 (1997) 217-222. [67]G. Casalbore-Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, M. Ling, Investigations on the ion transport mechanism in conduction polymer films, Solid State Ionics 131 (2000) 311-321. [68]J. Wang, Q. Lin, T. Zhang, R. Zhou, B. Xu, Humidity sensor based on composite material of nano-BaTiO3 and polymer RMX, Sens. Actuators B 81 (2002) 248-253. [69]J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang, Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Mater. Chem. Phys. 78 (2003) 746-750.
|