跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴學明
研究生(外文):Tai, Hsueh-Ming
論文名稱:大腸桿菌植酸酶在Pichia pastoris之選殖、表現及生化特性
論文名稱(外文):Cloning, Expression and Bioproperties of Recombinant E. coli Phytase in Pichia pastoris
指導教授:江善宗
指導教授(外文):Jiang, Shann-Tzong
口試委員:賴美津張珍田羅蕙芬楊昭順
口試委員(外文):Lai, Mei-ChinChang, chen-TienLo, Huei-FenYang, Chao-Hsun
口試日期:2015-06-17
學位類別:博士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:163
中文關鍵詞:植酸酶
外文關鍵詞:phytaseE. coliPichia pastoris
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
利用酵母菌(Pichia pastoris)表現系統表現來自大腸桿菌之植酸酶基因,重組植酸酶純化並探討其生化特性。首先以聚合酶鏈鎖反應篩選出大腸桿菌(Escherichia coli BL21 DE3) 之植酸酶基因,確認基因序列正確後將此基因接合到pGAPZC 表現載體,轉形入 Pichia pastoris SMD1168H 宿主中表現,重組植酸酶轉殖株在培養後可於胞外表現15.9 U/mL的酵素活性,經由 nickel 親和性層析進行純化,重組植酸酶之最適 pH 及溫度分別為 5.0 及 50oC,pH 與溫度安定性範圍為 pH 3.0-6.0 與 20-40oC 。植酸酶活性會被 Cu2+、Fe2+、Hg2+、Fe3+、phenylmethyl sulfonylfluoride (PMSF) 及N-tosyl-L-lysine chloromethyl ketone (TLCK) 抑制;但 Ba2+、Mg2+、Ca2+、Sr2+ 具活化效果,純化後的酵素較易被胃蛋白酶分解。
為瞭解植酸酶基因序列的最適化 (gene optimization) 對於 P. pastoris 表現系統中提高蛋白質表現量的影響,重組植酸酶純化並探討其生化特性。從大腸桿菌來源植酸酶基因,依據 P. pastoris 使用頻率較高的特定同義密碼子,設計並合成適合 P. pastoris 表現植酸酶基因的最適化基因序列 (op-phyA),再接合到 pGAPZαC 載體中以 P. pastoris SMD1168H 表現,轉殖株經由 5L 發酵槽培養114小時後活性可達201.1U/mL。將粗酵素液經濃縮及親和性管柱純化後可得到具有活性之植酸酶,經 SDS-PAGE 電泳分析其分子量為 46 kDa。生化特性分析顯示其最適 pH 為5.0,在 pH 3.0-8.0之間有較好的安定性。最適溫度為50oC,在25-40oC 範圍有較好的溫度安定性,對於胰蛋白酶具有較佳的抵抗能力,此重組植酸酶對於植酸鈣有較高的親和力。

To obtain the phytase gene from Escherichia coli BL21 DE3, express in Pichia pastoris system and characterize their bioproperties, the gene encoding E. coli BL21 DE3 phytase was amplified by PCR. The sequence of phytase was confirmed and ligated into pGAPZaC expression vector. The plasmid (pGAPZaC-phyA) transformed into Pichia pastoris SMD1168H expression host. The recombinant phytase was expressed and secreted into broth by P. pastoris SMD1168H after 96 h cultivation and the activity was reached to 15.9 U/mL. The phytase was purified by nickel affinity chromatography and characterization of recombinant phytase. The recombinant protein with optimal pH and temperature at 5.0 and 50 oC, respectively. It was stable at pH 3.0-6.0 and 20-40 oC. The purified recombinant phytase was strongly inhibited by Cu2+, Fe2+, Hg2+, Fe3+, phenylmethyl sulfonylfluoride (PMSF) and N-tosyl-L-lysine chloromethyl ketone (TLCK), but activated by Ba2+, Mg2+, Ca2+, Sr2+. The purified recombinant phytase was sensitive to pepsin.
To optimize the phytase gene expression in Pichia pastoris system and characterize the recombinant phytase, a mature phytase cDNA of E. coli being altered according to the codons usage preference of Pichia pastoris was artificially synthesized. Pichia pastoris mutant with E. coli phytase optimized gene was cloned into expression vector of pGAPZaC. The phytase activity was 201.1 U/mL after 114 h fermentation in 5L fermentor. The recombinant phytase, with a molecular mass of 46 kDa, was purified to electrophoretical homogeneity after Ni Sepharose 6 Fast Flow chromatography. The phytase had an optimal pH and temperature of 5.0 and 50 oC, respectively. It was stable at pH 3.0-8.0 and 25-40 oC. The purified recombinant phytase was resistant to trypsin and revealed higher affinity to calcium phytate than to other phosphate conjugates.

Abbreviations 1
中文摘要 2
Abstract 4
研究動機與目的 6
實驗設計 7
第一章 :文獻整理 9
壹、 植酸簡介 9
貳、 植酸酶簡介 11
參、 植酸酶特性 15
肆、 植酸酶應用及發展 17
一、 肥料與飼料之應用 17
二、 於食品上的應用 17
1. 應用於麵包製作 17
2. 生產植物蛋白分離物 18
3. 玉米濕磨 18
4. 分離麥麩 19
伍、 重組植酸酶之研究 19
陸、 大腸桿菌植酸分解酶 20
柒、 微生物表現系統 21
一、 Pichia pastoris表現系統 22
二、 Pichia pastoris 驅動異源蛋白質表現之啟動子 23
三、 嗜甲醇酵母菌Pichia pastoris 之分泌性訊息胜肽 25
四、 密碼子使用偏好 (codon usage preference) 26
第二章 :於酵母菌 (Pichia pastoris SMD1168H) 中表現大腸桿菌 (Escherichia coli) 植酸酶、純化及特性分析 29
壹、 中文摘要 29
貳、 英文摘要 30
參、 前言 31
肆、 實驗設計 32
伍、 實驗材料 32
一、 菌種 32
二、 質體 32
三、 藥品 32
四、 儀器 35
五、 藥品製備 37
陸、 實驗方法 42
一、 E. coli BL21(DE3)植酸酶基因之選殖及序列鑑定 42
1. 植酸酶基因專一性引子(primers)設計 42
2. Genomic DNA之萃取 43
3. 聚合酶鏈鎖反應(PCR) 44
4. 重組植酸酶基因 45
5. E. coli strain通透性細胞的製備 47
6. 質體轉形入 E. coli Top 10F' 通透性細胞 48
7. 重組植酸酶之質體DNA的抽取 49
8. DNA的定序(Sequencing) 51
二、 構築重組植酸酶基因於Pichia pastoris表現系統 51
1. 限制酶作用 51
2. 目標基因膠體純化 52
3. 質體接合作用 (ligation) 52
4. 質體轉形入E.coli TOP10F´通透性細胞 53
5. P. pastoris SMD1168H通透性細胞的製備 53
6. 質體電轉形入P. pastoris SMD1168H通透性細胞 54
7. Pichia pastoris SMD1168H轉殖株之鑑定 55
8. 電轉形 P. pastoris SMD1168H之質體穩定性 56
三、 重組植酸酶基因於Pichia pastoris系統的表現 56
1. 重組植酸酶菌株培養 57
2. 菌數、植酸酶活性與培養液pH之監測 57
四、 重組植酸酶的純化 60
1. 粗酵素液的製備 60
2. 超過濾濃縮 (Ultra-filtration) 60
3. Ni Sepharose 6 Fast Flow 親和性層析 61
4. 蛋白質濃度測定 61
5. 重組植酸酶之分子量 62
五、 重組植酸酶之生化特性分析 63
1. 最適反應溫度 63
2. 最適反應pH值 63
3. 溫度安定性 64
4. pH值安定性 64
5. 抑制劑對重組植酸酶的影響 65
6. 還原劑對重組植酸酶的影響 65
7. 金屬離子對重組植酸酶的影響 65
8. 基質之特異性 66
9. Pepsin 與 trypsin耐受性試驗 66
柒、 結果與討論 66
一、 pGAPZC-phyA酵母菌表現系統之構築、篩選與表現 66
二、 重組植酸酶之純化 70
三、 重組植酸酶之生化特性 72
1. 最適溫度之測定 72
2. 溫度安定性之測定 72
3. 最適酸鹼度試驗 73
4. 酸鹼度安定性試驗 74
5. 金屬鹽類的影響 74
6. 抑制劑與還原劑之影響 75
7. 基質之特異性 76
8. Pepsin 與 trypsin耐受性試驗 77
第三章 :於酵母菌 (Pichia pastoris SMD1168H) 中表現大腸桿菌 (Escherichia coli) 最適化植酸酶序列與其純化 79
壹、 中文摘要 79
貳、 英文摘要 81
參、 前言 82
肆、 實驗設計 83
伍、 實驗材料 83
一、 菌種 83
二、 質體 83
三、 藥品、儀器及藥品製備 83
陸、 實驗方法 83
一、 植酸酶基因之選殖 84
1. 植酸酶基因序列之設計與合成 84
2. E. coli strain通透性細胞的製備 85
3. 質體轉形入 E. coli Top 10F' 通透性細胞 85
4. 重組植酸酶之質體DNA的抽取 85
二、 構築重組植酸酶基因於Pichia pastoris表現系統 86
1. 限制酶作用 86
2. 目標基因膠體純化 86
3. 質體接合作用 (ligation) 86
4. 質體轉形入E.coli TOP10F´通透性細胞 87
5. DNA的定序(Sequencing) 87
6. P. pastoris SMD1168H通透性細胞的製備 88
7. 質體電轉形入P. pastoris SMD1168H通透性細胞 88
8. Pichia pastoris SMD1168H轉殖株之鑑定 89
9. 電轉形 P. pastoris SMD1168H 之質體穩定性 89
三、 重組植酸酶基因於Pichia pastoris系統的表現 89
1. 重組植酸酶菌株培養 89
2. 生菌數、植酸酶活性與培養液pH之監測 90
四、 重組植酸酶的純化 90
1. 粗酵素液的製備 90
2. 超過濾濃縮(Ultra-filtration) 90
3. Ni Sepharose 6 Fast Flow 親和性層析 91
4. 蛋白質濃度測定 91
5. 重組植酸酶之分子量、醣基染色 91
五、 重組植酸酶之生化特性分析 93
1. 最適反應溫度 93
2. 最適反應pH值 93
3. 溫度安定性 93
4. pH值安定性 93
5. 抑制劑對重組植酸酶的影響 93
6. 還原劑對重組植酸酶的影響 93
7. 金屬離子對重組植酸酶的影響 93
8. 基質之特異性 93
9. 酵素動力學 93
10. Pepsin 與 trypsin 耐受性試驗 94
柒、 結果與討論 94
一、 pGAPZC-op-phyA 酵母菌表現系統之構築、篩選與表 現 ..94
二、 重組植酸酶之純化 98
三、 重組植酸酶之生化特性 100
1. 最適溫度之測定 100
2. 溫度安定性之測定 101
3. 最適酸鹼度試驗 101
4. 酸鹼度安定性試驗 102
5. 金屬鹽類的影響 103
6. 抑制劑與還原劑之影響 103
7. 基質特異性 104
8. Pepsin 與 trypsin 耐受性試驗 105
9. 酵素動力學 105
捌、結論與展望 106
玖、參考文獻 150
投稿論文 160
壹、已發表之論文 160
貳、研討會壁報論文 161

Andriotis, V. M., & Ross, J. D. (2003). Isolation and characterisation of phytase from dormant Corylus avellana seeds. Phytochemistry, 64(3), 689-699.
Antrim R.L., Mitchinson C., & L.P., S. (1997). Method for liquefying starch., vol. 5652127.
Asada, K., Tanaka, K., & Kasai, Z. (1969). Formation of phytic acid in cereal grains. Ann N Y Acad Sci, 165(2), 801-814.
Buell, G., Schulz, M. F., Selzer, G., Chollet, A., Movva, N. R., Semon, D., Escanez, S., & Kawashima, E. (1985). Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I). Nucleic Acids Res, 13(6), 1923-1938.
Cao, S. S., & Hu, Z. Q. (2009). A new method for gene synthesis and its high-level expression. J Microbiol Methods, 79(1), 106-110.
Caransa A, Simell M, M. Lehmussaari, M. Vaara, & T. Vaara (1988). A novel enzyme application in corn wet milling. Starch, 40, 409-411.
Cawley, R. W., & and Mitchell, T. A. (1968). Inhibition of wheat alpha-amylase by bran phytic acid. Journal of the Science of Food and Agriculture,19, p.106.
Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 24(1), 45-66.
Chang CW (1967). Study of phytase and fluoride effects ingerminating corn seed. Cereal Chem, 44, 129-142.
Chaudhuri, T. K., Horii, K., Yoda, T., Arai, M., Nagata, S., Terada, T. P., Uchiyama, H., Ikura, T., Tsumoto, K., Kataoka, H., Matsushima, M., Kuwajima, K., & Kumagai, I. (1999). Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. J Mol Biol, 285(3), 1179-1194.
Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem, 20(4), 287-292.
Cregg, J. M. (2007a). Introduction: distinctions between Pichia pastoris and other expression systems. In: J. M. Cregg, Methods in Molecular Biology (pp. 1-10). Clifton, N.J.: Humana Press.
Cregg, J. M. (2007b). Introduction: distinctions between Pichia pastoris and other expression systems.: Humana Press.
Daly, R., & Hearn, M. T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit, 18(2), 119-138.
Descamps, F., Brouta, F., Vermout, S., Monod, M., Losson, B., & Mignon, B. (2003). Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol, 38(1), 29-34.
Devlin, P. E., Drummond, R. J., Toy, P., Mark, D. F., Watt, K. W., & Devlin, J. J. (1988). Alteration of amino-terminal codons of human granulocyte-colony -stimulating factor increases expression levels and allows efficient processing by methionine aminopeptidase in Escherichia coli. Gene, 65(1), 13-22.
Cosgrove D. J. (1970). Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scylloinositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci, 23, 1207-1220.
Dossa J, Marck C, & PL, B. (1990). The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphtase and glucose-1-phosphatase. J Bacteriol, 172, 5497-5500.
Dvorakova, J., Volfova, O., & Kopecky, J. (1997). Characterization of phytase produced by Aspergillus niger. Folia Microbiol (Praha), 42(4), 349-352.
Easton, A. M., Gierse, J. K., Seetharam, R., Klein, B. K., & Kotts, C. E. (1991). Production of bovine insulin-like growth factor 2 (bIGF2) in Escherichia coli. Gene, 101(2), 291-295.
Erdman JW. Jr (1979). Oilseed phytates : nutritional implications. Journal of the american oil chemists' society, 56, 736-741.
Eskin NAM, W. S. (1983). Changes in phytase activity and phytate during germination of two faba bean cultivars. J Food Sci 48, 270-271.
Fickett, J. W. (1982). Recognition of protein coding regions in DNA sequences. Nucleic Acids Res, 10(17), 5303-5318.
Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N. G., & Sandberg, A. S. (2001). Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem, 49(3), 1208-1212.
Fu, D., Huang, H., Luo, H., Wang, Y., Yang, P., Meng, K., Bai, Y., Wu, N., & Yao, B. (2008). A highly pH-stable phytase from Yersinia kristeensenii:Cloning, expression, and characterization. Enzyme and Microbial Technology, 42, 499-505.
Fu S, Sun J, & L., Q. (2008). Effect of Ca2+ on beta-propeller phytases. Protein Pept Lett., 15(1), 39-42.
Fugthong, A., Boonyapakron, K., Sornlek, W., Tanapongpipat, S., Eurwilaichitr, L., & Pootanakit, K. (2010). Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris. Protein Expr Purif, 70(1), 60-67.
Gargova, S., Sariyska, M., Angelov, A., & Stoilova, I. (2006). Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiol (Praha), 51(6), 541-545.
Gerard, A., Walsh, R., F. P., & and Denis, R. H. (1994). Enzymes in the animal-feed industry. Trends in Food Science & Technology, 5, 81-87.
Gibson D. M. (1987). Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett, 9, 305-310.
Gibson D. M., Ullah, & AB (1990). Phytase and their action on phytic acid in inositol metabolism in plants. Arch Biochem Biophys 262, 77-92.
Gibson, D. M., & Ullah, A. H. (1988). Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys, 260(2), 503-513.
Golovan, S., Wang, G., Zhang, J., & Forsberg, C. W. (2000). Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol, 46(1), 59-71.
Gouy, M., & Gautier, C. (1982). Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res, 10(22), 7055-7074.
Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., & Mercier, R. (1981). Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res, 9(1), 43-74.
Greaves, M. P., Anderson, G., & Webley, D. M. (1967). The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim Biophys Acta, 132(2), 412-418.
Greiner R, Alminger ML, & NG, C. (2001). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytatedegrading enzyme of baker's yeast. J Agric Food Chem, 49, 2228-2233.
Greiner, R., Haller, E., Konietzny, U., & Jany, K. D. (1997). Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys, 341(2), 201-206.
Greiner, R., & Konietzny, U. (2006). Phytase for Food Application. Food Technol. Biotechnol, 44(2), 125-140.
Greiner, R., Konietzny, U., & Jany, K. D. (1993). Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys, 303(1), 107-113.
Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung, 54(2), 121-138.
Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and applications of phytases. Appl Microbiol Biotechnol, 68(5), 588-597.
Han, Y., & Lei, X. G. (1999). Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys, 364(1), 83-90.
Hara A. Ebina S. Kondo A. & Funaguma T. (1985). A new type of phytase from Typha latifolia L. Agric Biol Chem, 49, 3539- 3544.
Haros M. , Rosell C.M., & Benedito C. (2001). Fungal phytase as a potential breadmaking additive. Eur. Food Res. Technol. , 213, 317-322.
Hernan, R. A., Hui, H. L., Andracki, M. E., Noble, R. W., Sligar, S. G., Walder, J. A., & Walder, R. Y. (1992). Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry, 31(36), 8619-8628.
Hershberg, R., & Petrov, D. A. (2008). Selection on codon bias. Annu Rev Genet, 42, 287-299.
Houde RL, Alli I, & S, K. (1990). Purification and characterization of canola seed (Brassica sp.) phytase. J Food Biochem, 14, 331-351.
Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, & R, B. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plantgrowth-promoting effect. Microbiology 148, 2097-2109.
Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol, 2(1), 13-34.
Irving, G. C., & Cosgrove, D. J. (1971). Inositol phosphate phosphatases of microbiological origin. Observations on the nature of the active centre of a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci, 24(3), 559-564.
Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, & S, N. (1997). Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83, 393-394.
Kanaya, S., Kudo, Y., Nakamura, Y., & Ikemura, T. (1996). Detection of genes in Escherichia coli sequences determined by genome projects and prediction of protein production levels, based on multivariate diversity in codon usage. Comput Appl Biosci, 12(3), 213-225.
Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol, 64(6), 2079-2085.
Kim, Y. O., Lee, J. K., Kim, H. K., Yu, J. H., & Oh, T. K. (1998). Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett, 162(1), 185-191.
King, J. L., & Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164(881), 788-798.
Komegay, E. T., Denbow, D. M., YI, Z., & Ravindran, V. (1996). Response of broilers to graded levels of Natuphos phytase added to corn-soybean meal based diets containing three levels of nonphytate phosphorus. British Journal of Nutrition, 75, 839-852.
Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science & Technology, 37(7), 791-812.
Konietzny, U., Greiner, R., & Jany, K. D. (1995). Purification and characterization of a phytase from spelt. J. Food Biochem., 18, 165-183.
Kvist S., Carlsson T., J.M., L., & F.B., D. (2005). Process for the fractionation of cereal brans. US patent application vol. US 20050089602.
Laboure, A. M., Gagnon, J., & Lescure, A. M. (1993). Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochem J, 295 ( Pt 2), 413-419.
Lee, S., Kim, T., Stahl, C. H., & Lei, X. G. (2005). Expression of Escherichia coli AppA2 phytase in four yeast systems. Biotechnol Lett, 27(5), 327-334.
Li, J., Shi, P. J., Han, X. Y., Meng, K., Yang, P. L., Wang, Y. R., Luo, H. Y., Wu, N. F., Yao, B., & Fan, Y. L. (2007). Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expr Purif, 54(1), 79-86.
Li, X., Yang, S. H., Yu, X. C., Jin, Z. X., Li, W. D., Li, L., Li, J., & Li, M. G. (2005). Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion. J Appl Microbiol, 99(4), 878-884.
Li-kou Zou, Hong-ning Wang, Xin Pan, Guo-bao Tian, Zi-wen Xie, Qi Wu, Hui Chen, Tao Xie and Zhi-rong Yang. (2008). Expression, purification and characterization of a phyAm-phyCs fusion phytase. J Zhejiang Univ Sci B. Jul; 9(7): 536–545.
Lim, D., Golovan, S., Forsberg, C. W., and Jia, Z. (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nature structural biology, 7(2), 108-113.
Liu BL, Rafiq A, Tzeng YM, & A, R. (1998). The induction and characterization of phytase and beyond. Enzyme Microb Technol, 22, 415-424.
Liu, J., Bollinger, D. W., Ledoux, D. R., & Veum, T. L. (1998). Lowering the dietary calcium to total phosphorus ratio increases phosphorus utilization in low-phosphorus corn-soybean meal diets supplemented with microbial phytase for growing-finishing pigs. J Anim Sci, 76(3), 808-813.
Lueking, A., Holz, C., Gotthold, C., Lehrach, H., & Cahill, D. (2000). A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif, 20(3), 372-378.
Luo, H., Huang, H., Yang, P., Wang, Y., Yuan, T., Wu, N., Yao, B., & Fan, Y. (2007). A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr Microbiol, 55(3), 185-192.
Marin, A., Bertranpetit, J., Oliver, J. L., & Medina, J. R. (1989). Variation in G + C-content and codon choice: differences among synonymous codon groups in vertebrate genes. Nucleic Acids Res, 17(15), 6181-6189.
Miksch, G., Kleist, S., Friehs, K., & Flaschel, E. (2002). Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol, 59(6), 685-694.
Mohsen, A. W., & Vockley, J. (1995). High-level expression of an altered cDNA encoding human isovaleryl-CoA dehydrogenase in Escherichia coli. Gene, 160(2), 263-267.
Mroz, Z., Jongbloed, A. W., & and Kemme, P. A. (1994). Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. Journal of Animal Science,, 72, 126-132.
Noronha, E. F., de Lima, B. D., de Sa', C. M., & Felix, C. R. (2002). Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World Journal of Microbiology and Biotechnology, 18(6), 563-568.
Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., & Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol, 63(4), 362-372.
Ostanin K, & RL, V. E. (1993). Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem, 268, 20778-20784.
Ostanin, K., Harms, E. H., Stevis, P. E., Kuciel, R., Zhou, M. M., & Van Etten, R. L. (1992). Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem, 267(32), 22830-22836.
Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 64(1), 34-50.
Purva Vats, & Uttam C Banerjee (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35(1), 3-14.
Pandee, P., Summpunn, P., Wiyakrutta, S., Isarangkul, D., & Meevootisom, V. (2011). A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol, 49(2), 257-264.
Powar, V. K., & Jagannathan, V. (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol, 151(3), 1102-1108.
Promdonkoy, P., Tang, K., Sornlake, W., P., H., Kobayashi, R. S., Ruanglek, V., Upathanpreecha, T., Vesaratchavest, M., Eurwilaichitr, L., & Tanapongpipat, S. (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett, 290, 18-24.
Puhl, A. A., Greiner, R., & Selinger, L. B. (2008). A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int J Biochem Cell Biol, 40(10), 2053-2064.
Quan, C. S., Fan, S. D., Zhang, L. H., Wang, Y. J., & Ohta, Y. (2002). Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng, 94(5), 419-425.
Raboy, V. (2003). myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6), 1033-1043.
Ragon, M., Neugnot-Roux, V., Chemardin, P., Moulin, G., & Boze, H. (2008). Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr Purif, 58(2), 275-283.
Reddy, N., Sathe, S., & Salunkhe, D. (1982). Phytates in legumes and cereals. Adv Food Res 28, 1-92.
Rodriguez, E., Porres, J. M., Han, Y., & Lei, X. G. (1999). Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch Biochem Biophys, 365(2), 262-267.
Sajidan, A., Farouk, A., Greiner, R., Jungblut, P., Muller, E. C., & Borriss, R. (2004). Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol, 65(1), 110-118.
Scott, J. J., & Loewus, F. A. (1986). A Calcium-Activated Phytase from Pollen of Lilium longiflorum. Plant Physiol, 82(1), 333-335.
Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., & and Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermental Bioengineering, 74, 7-11.
Selle, P. H. (1997). The potential of microbial phytase for the sustainable production of pigs and poultry. Aust Perspect, 1-39.
Shah V, & LJ, P. (1990). Phytase from Klebsiella sp. No. PG-2:purification and properties. Indian J Biochem Biophys, 27, 98-102.
Shieh TR, & JH, W. (1968). Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16, 1348-1351.
Shimizu M. (1992). Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, biotechnology, and biochemistry, 56(8), 1266-1269.
Singh, B., Kaur, P., & Satyanarayana, T., (2006). Fungal phytases for improving the nutritional status of foods and combating environmental phosphorus pollution. New Delhi, India, pp. : In: Chauhan, A. K., Verma, A. (Eds.), Microbes: Health and Environment. IK International Publishers.
Skowronski T. (1978). Some properties of partially purified phytase from Aspergillus niger. Acta Microbiol Pol 27, 41-48.
Tambe SM, Kaklij GS, Kelkar SM, & LJ, P. (1994). Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77, 23-27.
Tomschy A., Brugger R., Lehmann M., & Wyss M. (2002). Engineering of phytase for improved activity at low pH. Appl Environ Microbiol, 68, 1907-1913.
Tye AJ, Siu FK, Leung TY, & BL., L. (2002). Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol., 59, 190-197.
Uchida, H., Arakida, S., Sakamoto, T., & Kawasaki, H. (2006). Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD(-). J Biosci Bioeng, 102(6), 564-567.
Ullah AH, Sethumadhavan K, Lei XG, & EJ, M. (2000). Biochemical characterization of cloned Aspergillus fumigates phytase (phyA). Biochem Biophys Res Commun, 275, 279-285.
Van Etten, R. L., Davidson, R., Stevis, P. E., MacArthur, H., & Moore, D. L. (1991). Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem, 266(4), 2313-2319.
Van Hartingsveldt, W., Van Zeijl, C. M., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E., Luiten, R. G., van Paridon, P. A., Selten, G. C., Veenstra, A. E., van Gorcom, R. F., & et al. (1993). Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127(1), 87-94.
Vincent JB, Crowder MW, & BA, A. (1992). Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci, 17, 105-110.
Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 23, 29-60.
Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W., & Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. J Agric Food Chem, 47(2), 411-416.
Wang, Y., Gao, X., Su, Q., Wu, W., & An, L. (2007). Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Curr Microbiol, 55(1), 65-70.
Waterham H R, Digan M E, & Koutz P J. (1997). Isolation of the Pichia pastoris glyceraldehyde 3 phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186, 37~44.
Wodzinski, R. J., & Ullah, A. H. (1996). Phytase. Adv Appl Microbiol, 42, 263-302.
Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, & van, L. A. (1999b). Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol, 65, 359-366.
Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E., Gadient, M., Muller, F., & van Loon, A. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Appl Environ Microbiol, 64(11), 4446-4451.
Xiong, A. S., Yao, Q. H., Peng, R. H., Han, P. L., Cheng, Z. M., & Li, Y. (2005). High level expression of a recombinant acid phytase gene in Pichia pastoris. J Appl Microbiol, 98(2), 418-428.
Xiong, A. S., Yao, Q. H., Peng, R. H., Zhang, Z., Xu, F., Liu, J. G., Han, P. L., & Chen, J. M. (2006). High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol, 72(5), 1039-1047.
Yamada K, Minoda, Y., & Yamamoto K. (1968). Phytase from Aspergillus terreus. Part 1. Production, purification, and some general properties of the enzyme. Agric Biol Chem 32, 1275-1283.
Yang, M., Johnson, S. C., & Murthy, P. P. (2012). Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif, 84(2), 247-254.
Yanke, L. J., Selinger, L. B., & Cheng, K. J. (1999). Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol, 29(1), 20-25.
Zaghloul, T. I., Abdelaziz, A., & Mostafa, M. H. (1994). High level of expression and stability of the cloned alkaline protease (aprA) gene in Bacillus subtilis. Enzyme Microb Technol, 16(6), 534-537.
Zhang, G. Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour Technol, 101(11), 4125-4131.
Zhao, Q., Liu, H., & Zhang, Y. (2010). Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng, 110(6), 638-645.
Zhao, W., Xiong, A., Fu, X., Gao, F., Tian, Y., & Peng, R. (2010). High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl Biochem Biotechnol, 162(8), 2157-2165.
Zhu, W., Qiao, D., Huang, M., Yang, G., Xu, H., & Cao, Y. (2010). Modifying thermostability of appA from Escherichia coli. Curr Microbiol, 61(4), 267-273.
Zinin, N. V., Serkina, A. V., Gelfand, M. S., Shevelev, A. B., & Sineoky, S. P. (2004). Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiol Lett, 236(2), 283-290.
黃遵錫, & 章克昌 (1998). 植酸酵素基理與應用概況. Food and Fermentation Industries, 25(2), 54-58.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top