|
Andriotis, V. M., & Ross, J. D. (2003). Isolation and characterisation of phytase from dormant Corylus avellana seeds. Phytochemistry, 64(3), 689-699. Antrim R.L., Mitchinson C., & L.P., S. (1997). Method for liquefying starch., vol. 5652127. Asada, K., Tanaka, K., & Kasai, Z. (1969). Formation of phytic acid in cereal grains. Ann N Y Acad Sci, 165(2), 801-814. Buell, G., Schulz, M. F., Selzer, G., Chollet, A., Movva, N. R., Semon, D., Escanez, S., & Kawashima, E. (1985). Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I). Nucleic Acids Res, 13(6), 1923-1938. Cao, S. S., & Hu, Z. Q. (2009). A new method for gene synthesis and its high-level expression. J Microbiol Methods, 79(1), 106-110. Caransa A, Simell M, M. Lehmussaari, M. Vaara, & T. Vaara (1988). A novel enzyme application in corn wet milling. Starch, 40, 409-411. Cawley, R. W., & and Mitchell, T. A. (1968). Inhibition of wheat alpha-amylase by bran phytic acid. Journal of the Science of Food and Agriculture,19, p.106. Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 24(1), 45-66. Chang CW (1967). Study of phytase and fluoride effects ingerminating corn seed. Cereal Chem, 44, 129-142. Chaudhuri, T. K., Horii, K., Yoda, T., Arai, M., Nagata, S., Terada, T. P., Uchiyama, H., Ikura, T., Tsumoto, K., Kataoka, H., Matsushima, M., Kuwajima, K., & Kumagai, I. (1999). Effect of the extra n-terminal methionine residue on the stability and folding of recombinant alpha-lactalbumin expressed in Escherichia coli. J Mol Biol, 285(3), 1179-1194. Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem, 20(4), 287-292. Cregg, J. M. (2007a). Introduction: distinctions between Pichia pastoris and other expression systems. In: J. M. Cregg, Methods in Molecular Biology (pp. 1-10). Clifton, N.J.: Humana Press. Cregg, J. M. (2007b). Introduction: distinctions between Pichia pastoris and other expression systems.: Humana Press. Daly, R., & Hearn, M. T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit, 18(2), 119-138. Descamps, F., Brouta, F., Vermout, S., Monod, M., Losson, B., & Mignon, B. (2003). Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol, 38(1), 29-34. Devlin, P. E., Drummond, R. J., Toy, P., Mark, D. F., Watt, K. W., & Devlin, J. J. (1988). Alteration of amino-terminal codons of human granulocyte-colony -stimulating factor increases expression levels and allows efficient processing by methionine aminopeptidase in Escherichia coli. Gene, 65(1), 13-22. Cosgrove D. J. (1970). Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scylloinositol, and D-chiro-inositol by a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci, 23, 1207-1220. Dossa J, Marck C, & PL, B. (1990). The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphtase and glucose-1-phosphatase. J Bacteriol, 172, 5497-5500. Dvorakova, J., Volfova, O., & Kopecky, J. (1997). Characterization of phytase produced by Aspergillus niger. Folia Microbiol (Praha), 42(4), 349-352. Easton, A. M., Gierse, J. K., Seetharam, R., Klein, B. K., & Kotts, C. E. (1991). Production of bovine insulin-like growth factor 2 (bIGF2) in Escherichia coli. Gene, 101(2), 291-295. Erdman JW. Jr (1979). Oilseed phytates : nutritional implications. Journal of the american oil chemists' society, 56, 736-741. Eskin NAM, W. S. (1983). Changes in phytase activity and phytate during germination of two faba bean cultivars. J Food Sci 48, 270-271. Fickett, J. W. (1982). Recognition of protein coding regions in DNA sequences. Nucleic Acids Res, 10(17), 5303-5318. Fredrikson, M., Biot, P., Alminger, M. L., Carlsson, N. G., & Sandberg, A. S. (2001). Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J Agric Food Chem, 49(3), 1208-1212. Fu, D., Huang, H., Luo, H., Wang, Y., Yang, P., Meng, K., Bai, Y., Wu, N., & Yao, B. (2008). A highly pH-stable phytase from Yersinia kristeensenii:Cloning, expression, and characterization. Enzyme and Microbial Technology, 42, 499-505. Fu S, Sun J, & L., Q. (2008). Effect of Ca2+ on beta-propeller phytases. Protein Pept Lett., 15(1), 39-42. Fugthong, A., Boonyapakron, K., Sornlek, W., Tanapongpipat, S., Eurwilaichitr, L., & Pootanakit, K. (2010). Biochemical characterization and in vitro digestibility assay of Eupenicillium parvum (BCC17694) phytase expressed in Pichia pastoris. Protein Expr Purif, 70(1), 60-67. Gargova, S., Sariyska, M., Angelov, A., & Stoilova, I. (2006). Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiol (Praha), 51(6), 541-545. Gerard, A., Walsh, R., F. P., & and Denis, R. H. (1994). Enzymes in the animal-feed industry. Trends in Food Science & Technology, 5, 81-87. Gibson D. M. (1987). Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett, 9, 305-310. Gibson D. M., Ullah, & AB (1990). Phytase and their action on phytic acid in inositol metabolism in plants. Arch Biochem Biophys 262, 77-92. Gibson, D. M., & Ullah, A. H. (1988). Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys, 260(2), 503-513. Golovan, S., Wang, G., Zhang, J., & Forsberg, C. W. (2000). Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol, 46(1), 59-71. Gouy, M., & Gautier, C. (1982). Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res, 10(22), 7055-7074. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., & Mercier, R. (1981). Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res, 9(1), 43-74. Greaves, M. P., Anderson, G., & Webley, D. M. (1967). The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochim Biophys Acta, 132(2), 412-418. Greiner R, Alminger ML, & NG, C. (2001). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytatedegrading enzyme of baker's yeast. J Agric Food Chem, 49, 2228-2233. Greiner, R., Haller, E., Konietzny, U., & Jany, K. D. (1997). Purification and characterization of a phytase from Klebsiella terrigena. Arch Biochem Biophys, 341(2), 201-206. Greiner, R., & Konietzny, U. (2006). Phytase for Food Application. Food Technol. Biotechnol, 44(2), 125-140. Greiner, R., Konietzny, U., & Jany, K. D. (1993). Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys, 303(1), 107-113. Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7. Acta Microbiol Immunol Hung, 54(2), 121-138. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M., & Zelder, O. (2005). Biotechnological production and applications of phytases. Appl Microbiol Biotechnol, 68(5), 588-597. Han, Y., & Lei, X. G. (1999). Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys, 364(1), 83-90. Hara A. Ebina S. Kondo A. & Funaguma T. (1985). A new type of phytase from Typha latifolia L. Agric Biol Chem, 49, 3539- 3544. Haros M. , Rosell C.M., & Benedito C. (2001). Fungal phytase as a potential breadmaking additive. Eur. Food Res. Technol. , 213, 317-322. Hernan, R. A., Hui, H. L., Andracki, M. E., Noble, R. W., Sligar, S. G., Walder, J. A., & Walder, R. Y. (1992). Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry, 31(36), 8619-8628. Hershberg, R., & Petrov, D. A. (2008). Selection on codon bias. Annu Rev Genet, 42, 287-299. Houde RL, Alli I, & S, K. (1990). Purification and characterization of canola seed (Brassica sp.) phytase. J Food Biochem, 14, 331-351. Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, & R, B. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plantgrowth-promoting effect. Microbiology 148, 2097-2109. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol, 2(1), 13-34. Irving, G. C., & Cosgrove, D. J. (1971). Inositol phosphate phosphatases of microbiological origin. Observations on the nature of the active centre of a bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci, 24(3), 559-564. Jareonkitmongkol S, Ohya M, Watanabe R, Takagi H, & S, N. (1997). Partial purification of phytase from a soil isolate bacterium, Klebsiella oxytoca MO-3. J Ferment Bioeng 83, 393-394. Kanaya, S., Kudo, Y., Nakamura, Y., & Ikemura, T. (1996). Detection of genes in Escherichia coli sequences determined by genome projects and prediction of protein production levels, based on multivariate diversity in codon usage. Comput Appl Biosci, 12(3), 213-225. Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol, 64(6), 2079-2085. Kim, Y. O., Lee, J. K., Kim, H. K., Yu, J. H., & Oh, T. K. (1998). Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett, 162(1), 185-191. King, J. L., & Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164(881), 788-798. Komegay, E. T., Denbow, D. M., YI, Z., & Ravindran, V. (1996). Response of broilers to graded levels of Natuphos phytase added to corn-soybean meal based diets containing three levels of nonphytate phosphorus. British Journal of Nutrition, 75, 839-852. Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science & Technology, 37(7), 791-812. Konietzny, U., Greiner, R., & Jany, K. D. (1995). Purification and characterization of a phytase from spelt. J. Food Biochem., 18, 165-183. Kvist S., Carlsson T., J.M., L., & F.B., D. (2005). Process for the fractionation of cereal brans. US patent application vol. US 20050089602. Laboure, A. M., Gagnon, J., & Lescure, A. M. (1993). Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochem J, 295 ( Pt 2), 413-419. Lee, S., Kim, T., Stahl, C. H., & Lei, X. G. (2005). Expression of Escherichia coli AppA2 phytase in four yeast systems. Biotechnol Lett, 27(5), 327-334. Li, J., Shi, P. J., Han, X. Y., Meng, K., Yang, P. L., Wang, Y. R., Luo, H. Y., Wu, N. F., Yao, B., & Fan, Y. L. (2007). Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expr Purif, 54(1), 79-86. Li, X., Yang, S. H., Yu, X. C., Jin, Z. X., Li, W. D., Li, L., Li, J., & Li, M. G. (2005). Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion. J Appl Microbiol, 99(4), 878-884. Li-kou Zou, Hong-ning Wang, Xin Pan, Guo-bao Tian, Zi-wen Xie, Qi Wu, Hui Chen, Tao Xie and Zhi-rong Yang. (2008). Expression, purification and characterization of a phyAm-phyCs fusion phytase. J Zhejiang Univ Sci B. Jul; 9(7): 536–545. Lim, D., Golovan, S., Forsberg, C. W., and Jia, Z. (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nature structural biology, 7(2), 108-113. Liu BL, Rafiq A, Tzeng YM, & A, R. (1998). The induction and characterization of phytase and beyond. Enzyme Microb Technol, 22, 415-424. Liu, J., Bollinger, D. W., Ledoux, D. R., & Veum, T. L. (1998). Lowering the dietary calcium to total phosphorus ratio increases phosphorus utilization in low-phosphorus corn-soybean meal diets supplemented with microbial phytase for growing-finishing pigs. J Anim Sci, 76(3), 808-813. Lueking, A., Holz, C., Gotthold, C., Lehrach, H., & Cahill, D. (2000). A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif, 20(3), 372-378. Luo, H., Huang, H., Yang, P., Wang, Y., Yuan, T., Wu, N., Yao, B., & Fan, Y. (2007). A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr Microbiol, 55(3), 185-192. Marin, A., Bertranpetit, J., Oliver, J. L., & Medina, J. R. (1989). Variation in G + C-content and codon choice: differences among synonymous codon groups in vertebrate genes. Nucleic Acids Res, 17(15), 6181-6189. Miksch, G., Kleist, S., Friehs, K., & Flaschel, E. (2002). Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol, 59(6), 685-694. Mohsen, A. W., & Vockley, J. (1995). High-level expression of an altered cDNA encoding human isovaleryl-CoA dehydrogenase in Escherichia coli. Gene, 160(2), 263-267. Mroz, Z., Jongbloed, A. W., & and Kemme, P. A. (1994). Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. Journal of Animal Science,, 72, 126-132. Noronha, E. F., de Lima, B. D., de Sa', C. M., & Felix, C. R. (2002). Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World Journal of Microbiology and Biotechnology, 18(6), 563-568. Oh, B. C., Choi, W. C., Park, S., Kim, Y. O., & Oh, T. K. (2004). Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol, 63(4), 362-372. Ostanin K, & RL, V. E. (1993). Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem, 268, 20778-20784. Ostanin, K., Harms, E. H., Stevis, P. E., Kuciel, R., Zhou, M. M., & Van Etten, R. L. (1992). Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem, 267(32), 22830-22836. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 64(1), 34-50. Purva Vats, & Uttam C Banerjee (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35(1), 3-14. Pandee, P., Summpunn, P., Wiyakrutta, S., Isarangkul, D., & Meevootisom, V. (2011). A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol, 49(2), 257-264. Powar, V. K., & Jagannathan, V. (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol, 151(3), 1102-1108. Promdonkoy, P., Tang, K., Sornlake, W., P., H., Kobayashi, R. S., Ruanglek, V., Upathanpreecha, T., Vesaratchavest, M., Eurwilaichitr, L., & Tanapongpipat, S. (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett, 290, 18-24. Puhl, A. A., Greiner, R., & Selinger, L. B. (2008). A protein tyrosine phosphatase-like inositol polyphosphatase from Selenomonas ruminantium subsp. lactilytica has specificity for the 5-phosphate of myo-inositol hexakisphosphate. Int J Biochem Cell Biol, 40(10), 2053-2064. Quan, C. S., Fan, S. D., Zhang, L. H., Wang, Y. J., & Ohta, Y. (2002). Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng, 94(5), 419-425. Raboy, V. (2003). myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64(6), 1033-1043. Ragon, M., Neugnot-Roux, V., Chemardin, P., Moulin, G., & Boze, H. (2008). Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr Purif, 58(2), 275-283. Reddy, N., Sathe, S., & Salunkhe, D. (1982). Phytates in legumes and cereals. Adv Food Res 28, 1-92. Rodriguez, E., Porres, J. M., Han, Y., & Lei, X. G. (1999). Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch Biochem Biophys, 365(2), 262-267. Sajidan, A., Farouk, A., Greiner, R., Jungblut, P., Muller, E. C., & Borriss, R. (2004). Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol, 65(1), 110-118. Scott, J. J., & Loewus, F. A. (1986). A Calcium-Activated Phytase from Pollen of Lilium longiflorum. Plant Physiol, 82(1), 333-335. Segueilha, L., Lambrechts, C., Boze, H., Moulin, G., & and Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermental Bioengineering, 74, 7-11. Selle, P. H. (1997). The potential of microbial phytase for the sustainable production of pigs and poultry. Aust Perspect, 1-39. Shah V, & LJ, P. (1990). Phytase from Klebsiella sp. No. PG-2:purification and properties. Indian J Biochem Biophys, 27, 98-102. Shieh TR, & JH, W. (1968). Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16, 1348-1351. Shimizu M. (1992). Purification and characterization of phytase from Bacillus subtilis (natto) N-77. Bioscience, biotechnology, and biochemistry, 56(8), 1266-1269. Singh, B., Kaur, P., & Satyanarayana, T., (2006). Fungal phytases for improving the nutritional status of foods and combating environmental phosphorus pollution. New Delhi, India, pp. : In: Chauhan, A. K., Verma, A. (Eds.), Microbes: Health and Environment. IK International Publishers. Skowronski T. (1978). Some properties of partially purified phytase from Aspergillus niger. Acta Microbiol Pol 27, 41-48. Tambe SM, Kaklij GS, Kelkar SM, & LJ, P. (1994). Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng 77, 23-27. Tomschy A., Brugger R., Lehmann M., & Wyss M. (2002). Engineering of phytase for improved activity at low pH. Appl Environ Microbiol, 68, 1907-1913. Tye AJ, Siu FK, Leung TY, & BL., L. (2002). Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol., 59, 190-197. Uchida, H., Arakida, S., Sakamoto, T., & Kawasaki, H. (2006). Expression of Aspergillus oryzae phytase gene in Aspergillus oryzae RIB40 niaD(-). J Biosci Bioeng, 102(6), 564-567. Ullah AH, Sethumadhavan K, Lei XG, & EJ, M. (2000). Biochemical characterization of cloned Aspergillus fumigates phytase (phyA). Biochem Biophys Res Commun, 275, 279-285. Van Etten, R. L., Davidson, R., Stevis, P. E., MacArthur, H., & Moore, D. L. (1991). Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem, 266(4), 2313-2319. Van Hartingsveldt, W., Van Zeijl, C. M., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E., Luiten, R. G., van Paridon, P. A., Selten, G. C., Veenstra, A. E., van Gorcom, R. F., & et al. (1993). Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127(1), 87-94. Vincent JB, Crowder MW, & BA, A. (1992). Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci, 17, 105-110. Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol., 23, 29-60. Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W., & Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. J Agric Food Chem, 47(2), 411-416. Wang, Y., Gao, X., Su, Q., Wu, W., & An, L. (2007). Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Curr Microbiol, 55(1), 65-70. Waterham H R, Digan M E, & Koutz P J. (1997). Isolation of the Pichia pastoris glyceraldehyde 3 phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186, 37~44. Wodzinski, R. J., & Ullah, A. H. (1996). Phytase. Adv Appl Microbiol, 42, 263-302. Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Rothlisberger U, Kusznir E, Wahl G, Muller F, Lahm HW, Vogel K, & van, L. A. (1999b). Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol, 65, 359-366. Wyss, M., Pasamontes, L., Remy, R., Kohler, J., Kusznir, E., Gadient, M., Muller, F., & van Loon, A. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger PH 2.5 acid phosphatase. Appl Environ Microbiol, 64(11), 4446-4451. Xiong, A. S., Yao, Q. H., Peng, R. H., Han, P. L., Cheng, Z. M., & Li, Y. (2005). High level expression of a recombinant acid phytase gene in Pichia pastoris. J Appl Microbiol, 98(2), 418-428. Xiong, A. S., Yao, Q. H., Peng, R. H., Zhang, Z., Xu, F., Liu, J. G., Han, P. L., & Chen, J. M. (2006). High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol, 72(5), 1039-1047. Yamada K, Minoda, Y., & Yamamoto K. (1968). Phytase from Aspergillus terreus. Part 1. Production, purification, and some general properties of the enzyme. Agric Biol Chem 32, 1275-1283. Yang, M., Johnson, S. C., & Murthy, P. P. (2012). Enhancement of alkaline phytase production in Pichia pastoris: influence of gene dosage, sequence optimization and expression temperature. Protein Expr Purif, 84(2), 247-254. Yanke, L. J., Selinger, L. B., & Cheng, K. J. (1999). Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol, 29(1), 20-25. Zaghloul, T. I., Abdelaziz, A., & Mostafa, M. H. (1994). High level of expression and stability of the cloned alkaline protease (aprA) gene in Bacillus subtilis. Enzyme Microb Technol, 16(6), 534-537. Zhang, G. Q., Dong, X. F., Wang, Z. H., Zhang, Q., Wang, H. X., & Tong, J. M. (2010). Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23. Bioresour Technol, 101(11), 4125-4131. Zhao, Q., Liu, H., & Zhang, Y. (2010). Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng, 110(6), 638-645. Zhao, W., Xiong, A., Fu, X., Gao, F., Tian, Y., & Peng, R. (2010). High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl Biochem Biotechnol, 162(8), 2157-2165. Zhu, W., Qiao, D., Huang, M., Yang, G., Xu, H., & Cao, Y. (2010). Modifying thermostability of appA from Escherichia coli. Curr Microbiol, 61(4), 267-273. Zinin, N. V., Serkina, A. V., Gelfand, M. S., Shevelev, A. B., & Sineoky, S. P. (2004). Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiol Lett, 236(2), 283-290. 黃遵錫, & 章克昌 (1998). 植酸酵素基理與應用概況. Food and Fermentation Industries, 25(2), 54-58.
|