|
[1]O. D. Wei Wang, Carolina M Reyes, Peter A Kollman, "Biomolecular simulations- Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions," Annual Review of Biophysics and Biomolecular Structure, vol. 30, pp. 211-243, 2001. [2]D. Chandler, "Interfaces and the driving force of hydrophobic assembly," Nature, vol. 473, pp. 640-647, 2005. [3]S. A. B. Ailan Cheng, Kenneth M Merz Jr, Charles H Reynolds, "GB-SA water model for the Merck molecular force field (MMFF)," Journal of Molecular Graphics and Modelling, vol. 18, pp. 273-282, 2000. [4]J. Alexander D Mackerell, "Empirical force fields for biological macromolecules: overview and issues," Journal of Computational Chemistry, vol. 25, pp. 1584-1604, 2004. [5]C. L. B. I. B R Brooks, A D Mackerell Jr., L Nilsson, R J Petrella, B Roux, Y Won, G Archontis, C Bartels, S Boresch, A Caflisch, L Caves, Q Cui, A R Dinner, M Feig, S Fischer, J Gao, M Hodoscek, W IM, K Kuczera, T Lazaridis, J MA, V ovchinnikov, E Paci, R W Pastor, C B Post, J Z PU, M Schaefer, B Tidor, R M Venable, H L Woodcock, X WU, W Yang, D M York, M Karplus, "CHARMM: the biomolecular simulation program," Journal of Computational Chemistry, vol. 30, pp. 1545-1614, 2009. [6]J. M. Rong Chen, Joel Janin, Zhiping Weng, "A protein-protein docking benchmark," PROTEINS: Structure, Function, and Genetics, vol. 52, pp. 88-91, 2003. [7]B. P. a. Z. Weng, "A combination of rescoring and refinement significantly improves protein docking performance," Proteins, vol. 72, pp. 270-279, 2008. [8]J. Z. Ka-To Shum, John J. Rossi, "Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma," Journal of Cancer Therapy, vol. 4, pp. 872-890, 2013. [9]A. D. E. J. W. Szostak, "In Vitro Selection of RNA Molecules that Bind Specific Ligands," Nature, vol. 346, pp. 818-822, 1990. [10]J. C. Xu Wu, Min Wu, Julia Xiaojun Zhao, "Aptamers: active targeting ligands for cancer diagnosis and therapy," Theranostics, vol. 5, pp. 322-344, 2015. [11]S. L. a. C. B. Kyung-Mi Song, "Aptamers and their biological applications," Sensors (Basel), vol. 12, pp. 612-631, 2012. [12]S. D. Jayasena, "Aptamers- An Emerging Class of Molecules That Rival Antibodies in Diagnostics," Clinical Chemistry, vol. 45, pp. 1628–1650, 1999. [13]D. J. P. Thomas hermann, "Adaptive recognition by nucleic acid aptamers," Science, vol. 287, pp. 820-825, 2000. [14]B. C. S. K. Oliphant AR, "Defining the Sequence Specificity of DNA-Binding Proteins by Selecting Binding Sites from Random-Sequence Oligonucleotides: Analysis of Yeast GCN4 Protein," Molecular and Cellular Biology, vol. 9, pp. 2944-2949, 1989. [15]M. M. S. Tombelli, M. Mascini, "Analytical applications of aptamers," Biosensors and Bioelectronics, vol. 20, pp. 2424-34, 2005. [16]J. P. K. Yun Hwa Kim, Se Jong Han, Sang Jun Sim, "Aptamer biosensor for lable-free detection of human immunoglobulin E based on surface plasmon resonance," Sensors and Actuators B: Chemical, vol. 139, pp. 471-475, 2009. [17]M. M. Sara Tombelli, Marco Mascini, "Aptamers-based assays for diagnostics, environmental and food analysis," Biomolecular Engineering, vol. 24, pp. 191-200, 2007. [18]R. L. Jinli Wang, Jingjuan Xu, Danke Xu, Hongyuan Chen, "Characterizing the interaction between aptamers and human IgE by use of surface plasmon resonance," Analytical and Bioanalytical Chemistry, vol. 390, pp. 1059-1065, 2008. [19]A. P. Yun Lin, KATHLEEN M MORDEN, SUMEDHA D JAYASENA, "Peptide conjugation to an in vitro-selected DNA ligand improves enzyme inhibition," Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 11044-11048, 1995. [20]A. W. S. Mark F Kubik, Dan Schneider, Richard A Marlar, Diane Tasset, "High-affinity RNA ligands to human α-thrombin," Nucleic Acids Research, vol. 22, pp. 2619-2626, 1994. [21]M. F. K. Diane M Tasset, Walter Steiner, "Oligonucleotide inhibitors of human thrombin that bind distinct epitopes," Journal of Molecular Biology, vol. 272, pp. 688-698, 1997. [22]S. V. Qing Zhang, Philip E Bourne, "Overview of Structural Bioinformatics," Bioinformatics Technologies, pp. 15-44, 2005. [23]J. P. P. Markus G Grutter, Joseph Rahuel, Hugo Grossenbacher, Wolfram Bode, Jan Hofsteenge, Stuart R Stone, "Crystal structure of the thrombin-hirudin complex- a novel mode of serine protease inhibition," The EMBO Journal, vol. 9, pp. 2361 -2365, 1990. [24]M. J. F. John W Fenton, Anne B Stackrow, "Human thrombins. Production, evaluation, and properties of alpha-thrombin," The Journal of Biological Chemistry, vol. 252, pp. 3587-3598, 1977. [25]I. M. W Bode, U Baumann, R Huber, S R Stone, J Hofsteenge, "The refined 1.9 A crystal structure of human alpha-thrombin- interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment," The EMBO Journal, vol. 8, pp. 3467 - 3475, 1989. [26]K. G. R. Timothy J Rydel, A tulinsky, Wolfarm Bode, Robert Huber, Carolyn Roitsh, John W Fenton II, "The Structure of a Complex of Recombinant Hirudin and Human (alpha)-Thrombin," Science, vol. 249, pp. 277-280, 1990. [27]K. P. P. Kaillathe Padmanabhang, Joseph D Ferrarag, J Evan Sadled, Alexander Tulinsky, "The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer," The Journal of Biological Chemisrty, vol. 268, pp. 17651-17654, 1993. [28]J. F. Jennifer A Kelly, Todd O Yeates, "Reconciliation of the X-ray and NMR Structures of the Thrombin-Binding Aptamer d(GGTTGGTGTGGTTGG)," Journal of Molecular Biology, vol. 256, pp. 417-422, 1996. [29]P. S. Roman F Macaya, Flint W Smith, James A Roe, Juli Feigon, "Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution," Proceedings of the National Academy of Sciences of the United States of America, vol. 90, pp. 3745-3749, 1993. [30]M. M. Alessandra Bini, Marco Mascini, Anthony P.F. Turner, "Selection of thrombin-binding aptamers by using computational approach for aptasensor application," Biosensors and Bioelectronics, vol. 26, pp. 4411-4416, 2011. [31]R. L. Moritz Felcht, Alexander Schering, Philipp Seidel, Kshitij Srivastava, Junhao Hu, Arne Bartol, Yvonne Kienast, Christiane Vettel, Elias K. Loos, Simone Kutschera, Susanne Bartels, Sila Appak, Eva Besemfelder, Dorothee Terhardt, Emmanouil Chavakis, Thomas Wieland, Christian Klein, Markus Thomas, Akiyoshi Uemura, Sergij Goerdt, and Hellmut G. Augustin, "Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling," The Journal of Clinical Investigation, vol. 122, pp. 1991-2005, 2012. [32]S. D. George D. Yancopoulos, Nicholas W. Gale, John S. Rudge, Stanley J. Wiegand & Jocelyn Holash, "Vascular-specific growth factors and blood vessel formation," Nature, vol. 407, pp. 242-248, 2000. [33]S. A. M. Brunna E Alves, Franciso JP Aranha, Tania FG Siegl, Carmino A Souza, Irene Lorand-Metze, and J. M. A.-B. a. E. V. D. Paula, "Imbalances in serum angiopoietin concentrations are early predictors of septic shock development in patients with post chemotherapy febrile neutropenia," BMC Infectious Diseases, vol. 10, p. 143, 2010. [34]C. S. Peter C Maisonpierre, Pamela F Jones, Sona Bartunkova, Stanley J Wiegand, Czeslaw Radziejewski, Debra Compton, Joyce McClain, Thomas H Aldrich, Nick Papadopoulos, Thomas J Daly, Samuel Davis, Thomas N Sato, George D Yancopoulos, "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis," Science, vol. 277, pp. 55-60, 1997. [35]H. I. Tsuyoshi Etoh, Shinji Tanaka, Graham F. Barnard, Seigo Kitano, and Masaki Mori, "Angiopoietin-2 Is Related to Tumor Angiogenesis in Gastric Carcinoma: Possible in Vivo Regulation via Induction of Proteases," Cancer Research, vol. 61, pp. 2145-2153, 2001. [36]M. M. Shinji Tanaka, Yoshihiro Sakamoto, Masatoshi Makuuchi, Keizo Sugimachi, and Jack R. Wands, "Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma," The Journal of Clinical Investigation, vol. 103, pp. 341–345, 1999. [37]W. R. Astrid Stratmann, and Karl H. Plate, "Cell Type-Specific Expression of Angiopoietin-1 and Angiopoietin-2 Suggests a Role in Glioblastoma Angiogenesis," American Journal of Pathology, vol. 153, pp. 1459-1466, 1998. [38]W. L. Syed A. Ahmad, Young D. Jung, Fan Fan, Niels Reinmuth, Corazon D. Bucana, Lee M. Ellis, "Differential Expression of Angiopoietin-1 and Angiopoietin-2 in Colon Carcinoma," Cancer, vol. 92, pp. 1138-1143, 2001. [39]A. H. David Z, David R. Friedlander, Wai Chan, Jocelyn Holash, Stanley J. Wiegand, George D. Yancopoulos, and Martin Grumet, "In Situ Expression of Angiopoietins in Astrocytomas Identifies Angiopoietin-2 as an Early Marker of Tumor Angiogenesis," Experimental Neurology, vol. 159, pp. 391-400, 1999. [40]C. J. Brown, S. G. Dastidar, H. Y. See, D. W. Coomber, M. Ortiz-Lombardia, C. Verma, et al., "Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting," J Mol Biol, vol. 395, pp. 871-83, Jan 29 2010. [41]M. T. Patrick Nasarre, Karoline Kruse, Iris Helfrich, Vivien Wolter, Carleen Deppermann, Dirk Schadendorf, Gavin Thurston, Ulrike Fiedler and Hellmut G Augustin, "Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth," Cancer Research, vol. 69, pp. 1324-1333, 2009. [42]B. L. F. Hiroya Hashizume, Takashi Kuroda, Peter Baluk, Angela Coxon, Dongyin Yu, and J. D. O. James V. Bready, and Donald M. McDonald, "Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth," Cancer Research, vol. 70, pp. 2213-23, 2010. [43]A. B. Hanhua Huang, Gary Woodnutt and Rodney Lappe, "Targeting the ANGPT-TIE2 pathway in malignancy," Nature Reviews Cancer, vol. 10, pp. 575-85, 2010. [44]F. P. Roberta Mazzieri, Davide Moi, Erika Zonari, Anna Ranghetti, Alvise Berti, Letterio S. Politi, Bernhard Gentner, Jeffrey L. Brown, Luigi Naldini, and Michele De Palma, "Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells," Cancer Cell, vol. 19, pp. 512-26, 2011. [45]H.-Z. K. Young Jun Koh, Seong-Ik Hwang, Jeung Eun Lee, Nuri Oh, Keehoon Jung, Minah Kim, Kyung Eun Kim, Homin Kim, Nam-Kyu Lim, Choon-Ju Jeon, Gyun Min Lee, Byeong Hwa Jeon, Do-Hyun Nam, and A. N. Hoon Ki Sung, Ook Joon Yoo, Gou Young Koh, "Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage," Cancer Cell, vol. 18, pp. 171-84, 2010. [46]S. S. White Rebekah R, Rusconi Christopher P, Shetty Geetha, Dewhirst Mark W, Kontos Christopher D, Sullenger Bruce A, "Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2," Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 5028-5033, 2003. [47]M. D. Shiva Sarraf-Yazdi, Jing Mi, M.D., Ph.D., Benjamin J. Moeller, M.D., Xilin Niu, M.D., Rebekah R. White, M.D., Christopher D. Kontos, M.D., Bruce A. Sullenger, Ph.D., Mark W. Dewhirst, D.V.M., Ph.D., and Bryan M. Clary, M.D., "Inhibition of in vivo tumor angiogenesis and growth via systemic delivery of an angiopoietin 2-specific RNA aptamer," Journal of Surgical Research, vol. 146, pp. 16-23, 2008. [48]M. O. S. Yaroslav Chushak, "In silico selection of RNA aptamers," Nucleic Acids Research, vol. 37, p. e87, 2009. [49]d. S. Ioannis Xenarios, Xiaoqun Joyce Duan, Patrick Higney, Sul-Min Kim, David Eisenberg, "DIP, the Database of Interacting Proteins- a research tool for studying cellular networks of protein interactions," Nucleic Acids Research, vol. 30, pp. 303-305, 2002. [50]D. R. Paul Shannon, Andrew Markiel, Nada Amin, Owen Ozier, Nitin S Baliga, Benno Schwikowski, Trey Ideker, "Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks," Genome Research, vol. 12, pp. 47-56, 2002. [51]M. S. Yong Xiong, "Protein–Nucleic Acid Interaction: Major Groove Recognition Determinants. eLS. ." 2001. [52]R. A. L. Nicholas M Luscombe, Janet M Thornton, "Amino acid–base interactions: a three-dimensional analysis of protein–DNA interactions at an atomic level," Nucleic Acids Research, vol. 29, pp. 2860-2874, 2001. [53]H. M. Yael Mandel-Gutfreund, "Quantitative parameters for amino acid–base interaction: implications for prediction of protein–DNA binding sites," Nucleic Acids Research, vol. 26, pp. 2306–2312, 1998. [54]J. M. R. Nadrian C Seeman, Alexander Rich, "Sequence-specific recognition of double helical nucleic acids by proteins," Proceedings of the National Academy of Sciences of the United States of America, vol. 73, pp. 804-808, 1976. [55]O. G. a. A. D. M. Jr, "Computational evaluation of protein-small molecule binding," Current Opinion in Structural Biology, vol. 19, pp. 56-61, 2009. [56]S. G. D. Christopher J. Brown, Hai Yun See, David W. Coomber, Miguel Ortiz-Lombardía, Chandra Verma and David P. Lane, "Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting," Journal of Molecular Biology, vol. 395, pp. 871-883, 2010. [57]P. I. A. Karen Muthusamy, Patrick Govender, Hendrik G. Kruger, Glenn E. M. Maguire, Thavendran Govender, "Design and study of peptide-based inhibitors of amylin cytotoxicity," Bioorganic & Medicinal Chemistry Letters, vol. 20, pp. 1360-1362, 2010. [58]L.-L. L. Qi Huang, Sheng-Yong Yang, "PhDD: A new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility," Journal of Molecular Graphics and Modelling, vol. 28, pp. 775-787, 2010. [59]R. M. J. a. M. J. E. S. Henry A. Gabb, "Modeling protein docking using shape complementarity, electrostatics and biochemical information," 1997. [60]V. A. R. Jeffrey G Mandell, Michael E Pique, Vladimir Kotlovyi, Julie C Mitchell, Erik Nelson, Igor Tsigelny, Lynn F Ten Eyck, "Protein docking using continuum electrostatics and geometric fit," Protein Engineering, vol. 14, pp. 105-113, 2001. [61]I. A. Vakser, "Evaluation of GRAMM low-resolution docking methodology on the hemagglutinin-antibody complex," Proteins, vol. 1, pp. 226-230, 1997. [62]D. H. J. B. a. P. G. Stockley, "Aptamers come of age - at last," Nature Reviews Microbiology, vol. 4, pp. 588-96, 2006. [63]P. A. De Luca Laura, Vistoli Giulio, Letizia Barreca Maria, Villa Luigi, Monforte Pietro, Chimirri Alba, "Analysis of the full-length integrase–DNA complex by a modified approach for DNA docking," Biochemical and Biophysical Research Communications, vol. 310, pp. 1083-1088, 2003. [64]H. A. G. Michael J E Sternberg, Richard M Jackson, "Predictive docking of protein—protein and protein—DNA complexes," Current Opinion in Structural Biology, vol. 8, pp. 250-256, 1998. [65]A. D. J. v. D. Marc van Dijk, Victor Hsu, Rolf Boelens and Alexandre M. J. J. Bonvin, "Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility," Nucleic Acids Research, vol. 34, pp. 3317-3325, 2006. [66]D. T. A. D. Susan Jones, Nicholas M Luscombe, Helen M Berman, Janet M Thornton, "Protein–RNA interactions- a structural analysis," Nucleic Acids Research, vol. 29, pp. 943-954, 2001. [67]W. D. Wilson, "Analyzing biomolecular interactions," Science, vol. 295, pp. 2103-2105, 2002. [68]A. V. H. Patrick Englebienne, Michel Verhas, "Surface plasmon resonance- principles, methods and applications in biomedical sciences.," Journal of Spectroscopy, vol. 17, pp. 255-273, 2003. [69]S. F. Eric M Phizicky, "Protein–protein interactions- methods for detection and analysis," Microbiological reviews, vol. 59, pp. 94-123, 1995. [70]M. M. Simona Scarano, Anthony P.F. Turner, Maria Minunni, "Surface plasmon resonance imaging for affinity-based biosensors," Biosensors and Bioelectronics, vol. 25, pp. 957-966, 2010. [71]C. Guiducci, "Surface plasmon resonance systems," Surface Plasmon Resonance Handout, pp. 1-28, 2011. [72]H. L. Emeline Bouffartigues, Marielle Anger-Leroy, Sylvie Rimsky and Malcolm Buckle, "Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions," Nucleic Acids Research, vol. 35, p. e39, 2007. [73]L. H. Nogues C, Langendorf C G, Law R H, Buckle A M, Buckle M, "Characterisation of peptide microarrays for studying antibody-antigen binding using surface plasmon resonance imagery," PLoS One, vol. 5, p. e12152, 2010. [74]H. H. P. Wong C L, Suen Y K, Kong S K, Chen Q L, Yuan W, Wu S Y, "Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging," Biosensors and Bioelectronics, vol. 24, pp. 606-612, 2008. [75]T. E. G. Bryce P Nelson, Mark R Liles, Robert M Goodman, and Robert M Corn, "Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays," Analytical Chemistry, vol. 73, pp. 1-7, 2001. [76]L. X. Andrei Kouranov, Joanna de la Cruz, Li Chen, John Westbrook, Philip E. Bourne and Helen M. Berman, "The RCSB PDB information portal for structural genomics," Nucleic Acids Research, vol. 34, pp. D302–D305, 2006. [77]T. A. Padmanabhan K, "An ambiguous structure of a DNA 15-mer thrombin complex," Acta Crystallographica Section D Biological Crystallography, vol. 52, pp. 272-282, 1996. [78]D. T.-R. William A Barton, Edward P Miranda, Momchil V Kolev, Kanagalaghatta R Rajashankar, Juha P Himanen & Dimitar B Nikolov, "Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex," Nature Structural & Molecular Biology, vol. 13, 2006. [79]R. J. A. White R R., Viles K D, Sullenger B A., Kontos C D, "A nuclease-resistant RNA aptamer specifically inhibits angiopoietin-1-mediated Tie2 activation and function," Angiogenesis, vol. 11, pp. 395-401, 2008. [80]M. H. Kengo Sato, Kiyoshi Asai and Toutai Mituyama, "CENTROIDFOLD: a web server for RNA secondary structure prediction," Nucleic Acids Research, vol. 37, pp. W277–W280, 2009. [81]M. S. Mariusz Popenda, Maciej Antczak, Katarzyna J. Purzycka, Piotr Lukasiak, Natalia Bartol, Jacek Blazewicz and Ryszard W. Adamiak, "Automated 3D structure composition for large RNAs," Nucleic Acids Research, vol. 40, p. e112, 2012. [82]R. C. a. Z. Weng, "A Novel Shape Complementarity Scoring Function for Protein-Protein Docking," PROTEINS: Structure, Function, and Genetics, vol. 51, pp. 397–408, 2003. [83]R. M. J. Henry A Gabb, Michael J E Sternberg, "Modelling protein docking using shape complementarity, electrostatics and biochemical information," Journal of Molecular Biology, vol. 272, pp. 106-120, 1997. [84]R. C. a. Z. Weng, "Docking unbound proteins using shape complementarity, desolvation, and electrostatics," PROTEINS: Structure, Function, and Genetics, vol. 47, pp. 281-294, 2002. [85]S. V. a. C. J. Camacho, "Protein–protein docking: is the glass half-full or half-empty?," TRENDS in Biotechnology, vol. 22, pp. 110-116, 2004. [86]G. V. Chao Zhang, James L Cornette, Charles DeLisi, "Determination of atomic desolvation energies from the structures of crystallized proteins," Journal of Molecular Biology, vol. 267, pp. 707-726, 1997. [87]S. Q. a. H.-X. Zhou, "Structural Models of Protein-DNA Complexes Based on Interface Prediction and Docking," Current Protein & Peptide Science, vol. 12, pp. 531–539, 2011. [88]S. Q. a. H.-X. Z. Harianto Tjong, "PI2PE: protein interface/interior prediction engine," Nucleic Acids Research, vol. 35, pp. W357–W362, 2007. [89]W. Z. Pierce B, "ZRANK: reranking protein docking predictions with an optimized energy function," PROTEINS: Structure, Function, and Bioinformatics, vol. 67, pp. 1078–1086, Jun 1 2007. [90]L. M. B. Long S B, White R R, Sullenger B A, "Crystal structure of an RNA aptamer bound to thrombin," RNA, vol. 14, pp. 2504-2512, 2008. [91]C. G. L. Wen-Pin Hu, Chen S J, Kuo Y M, "Kinetic analysis of beta-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing," Journal of Neuroscience Methods, vol. 154, pp. 190-197, 2006. [92]T. D. Barton W A, Nikolov D B, "Structure of the angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition," Structure, vol. 13, pp. 825-832, 2005. [93]G. Schreiber, "Kinetic studies of protein-protein interactions," Current Opinion in Structural Biology, vol. 12, pp. 41-47, 2002. [94]K. A. Nasa Savory, Koji Sode, Kazunori Ikebukuro, "Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing," Biosensors and Bioelectronics, vol. 26, pp. 1386-1391, 2010.
|