跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊佳蕙
研究生(外文):Chia-Hui Yang
論文名稱:奈米碳管紙致動器製程最佳化之離子液體效應分析
論文名稱(外文):Optimal Manufacturing of Buckypaper Actuator and Analyzing Effect of Ionic Liquid
指導教授:陳怡文陳怡文引用關係陳以文陳以文引用關係
指導教授(外文):Yi-Wen ChenI-Wen Chen
口試委員:陳怡文陳以文謝明佑黃家逸
口試委員(外文):Yi-Wen ChenI-Wen ChenMing-You ShieChia-Yi Huang
口試日期:2015-06-06
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:65
中文關鍵詞:單壁奈米碳管多壁奈米碳管奈米碳管紙致動器離子液體
外文關鍵詞:Single-wall Carbon NanotubeMulti-wall Carbon NanotubeBuckypaperActuatorIonic Liquid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管紙致動器(Buckypaper actuator; BP actuator)比起其他材料的致動器(Actuator),較適合用來應用於仿生機械系統上,且已經有許多團隊及學者針對其做研究及開發,而本研究的研究目的是於增加奈米碳管紙致動器之性能,以往的研究都是針對奈米碳管紙的種類或是分析奈米碳管紙致動器的製程參數,期望能增加其性能,而分析過去學者的研究,發現其材料之一:離子液體(Ionic liquid; IL),對奈米碳管紙致動器有極大的影響,因此,本研究分析四種不同離子液體製成奈米碳管紙致動器其性能的差異,並提出最適合製成奈米碳管紙致動器之離子液體。以此能製作出性能佳之致動器,擁有高度潛能應用於機器人或是微機電控制系統(Micro Electro Mechanical Systems; MEMS)。在本研究中,首先先自製單壁奈米碳管(SWCNT):多壁奈米碳管(MWCNT) = 9:4之奈米碳管紙(Buckypaper; BP),本研究提出一製作奈米碳管紙製程,成功得到相當性能之奈米碳管紙,然後再使用自製奈米碳管紙製作奈米碳管紙致動器,並量測其輸出力及位移,從量測數據中分析四種不同的離子液體其離子種類及離子大小對於奈米碳管紙致動器性能的影響,發現離子體積較小的離子液體能得到較好的輸出力及位移,擁有陽離子EMI+和陰離子SCN-的離子液體所製成之奈米碳管紙致動器能得到較大的輸出力,擁有陽離子EMI+和陰離子Otf-的離子液體製成之奈米碳管紙致動器位移較佳。
The Buckypaper actuator(BP actuator)was more appropriate to be applied in biomimetic system than other actuators. Many researchers had demonstrated the performance of it. The goal of our research is to increase the performance of BP actuator. The previous research increased the performance of BP actuator by analyzing different types of BP or the manufacturing parameters. The ionic liquid(IL)also had a strong influence on BP actuator through the past researches. Thus, our research analyze the performance of BP actuator based on four different IL, and propose an optimal IL to manufacture BP actuator with better performance. It has a high potential to applicate in robot or micro electro mechanical systems. First, our research manufacture Buckypaper(BP)with SWCNT-to- MWCNT ratio at nine to four, and propose a process of manufacturing BP. It also has a high performance. The BP actuator is made of the Buckypaper(BP)which our team manufacture. After that, our research analyze the influence of ionic types and ionic volumes about four IL by measuring the force and the displacement. Our research find the smaller volumes of ion has a better force and displacement. The BP actuator with cation EMI+ and anion SCN- has a bigger force, and the Buckypaper actuator with cation EMI+ and anion Otf- has a better displacement. According to these result, our research find an optimal IL to manufacture BP actuator.
目錄
摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究架構 4
第二章 文獻回顧 5
2.1 EAP致動器的分類與發展 5
2.2 EAP致動器─三明治結構(Sandwich structure) 9
2.3 EAP致動器─離子液體(Ionic Liquid; IL) 10
2.4 離子液體對三明治結構的離子式EAP致動器的影響 11
第三章 研究方法 13
3.1 實驗材料與儀器 13
3.2 實驗流程 28
3.3 分析流程 38
第四章 實驗結果與數據分析 40
4.1 奈米碳管紙結果分析 40
4.2 奈米碳管紙致動器結果分析 42
4.3 小結 52
第五章 結論與建議 53
5.1 結論 53
5.2 未來課題 53
參考文獻 55
參考文獻
中文部分
1.丁海濤(2010)。IPMC 人工肌肉材料的製備 理論模型與分析。南京航空航天大學,南京市。
2.三聯科技(2015)。 荷重計。取自:http://www.sanlien.com/web/homepage.nsf/main3?OpenForm&View=19&start=31&count=10
3.中原大學電機工程學系 專題成果(2014)。液晶掺雜不同維度碳奈米材料之介電研究。取自:http://www.ee.cycu.edu.tw/topic_page.php?id=103&page=3&year
4.沈倩宇(2012)。基於離子液體凝膠的電致動膜材料研究。上海師範大學,上海市。
5.林岳劭(2014)。利用實驗設計法最佳化 奈米碳管紙致動器性能之研究。東海大學工業工程與經營資訊所碩士論文,台中市。
6.邵信(2014)。離子液體在環境領域之應用。工研院材料與化工研究所,新竹縣。
7.陳益臻, & 陳大潘(2004)。離子高分子金屬複合材料制動器之電壓與位移關係之研究。國立交通大學,新竹市。
8.葉孟考、黃婉萱、宋棋舜和呂俊麟(2009)。複合材料力學近況簡介。國立清華大學動力機械工程學系,新竹市。
9.機器世界 工業機器人日報(2014)。上市公司爭相聯姻工業機器人華昌達收購德梅柯備受矚目。取自: http://www.jiqishijie.com/p/186
英文部分
1.Akita, S., Nakayama, Y., Mizooka, S., Takano, Y., Okawa, T., Miyatake, Y., . . . Nosaka, T. (2001). Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Applied Physics Letters, 79 (11), 1691-1693.
2.Bar-Cohen, Y. (2007). Focus issue on biomimetics using electroactive polymers as artificial muscles. Bioinspiration & Biomimetics, 2(2), null.
3.Bennett, M. D., & Leo, D. J. (2004). Ionic liquids as novel solvents for ionic polymer transducers. Paper presented at the Smart Structures and Materials.
4.Chen, I.-W. P., Cottinet, P.-J., Tsai, S.-Y., Foster, B., Liang, R., Wang, B., & Zhang, C. (2012). Improved performance of carbon nanotube buckypaper and ionic-liquid-in-Nafion actuators for rapid response and high durability in the open air. Sensors and Actuators B: Chemical, 171, 515-521.
5.Cottinet, P.-J., Le, M.-Q., Degraff, J., Souders, C., Liang, Z., Wang, B., & Zhang, C. (2013). Strain phenomenon in carbon nanotube buckpaper actuator: Experiments and modeling. Sensors and Actuators A: Physical, 194, 252-258.
6.Cottinet, P.-J., Souders, C., Tsai, S.-Y., Liang, R., Wang, B., & Zhang, C. (2012). Electromechanical actuation of buckypaper actuator: Material properties and performance relationships. Physics Letters A, 376 (12), 1132-1136.
7.CANOE (2015). Aqueous dispersion of carbon nanotubes Retrieved from http://www.plateforme-canoe.com/product/aqueous-dispersion-of-carbon-nanotubes/
8.Electrochemistry Encyclopedia (2004). Electroactive Polymer (EAP) Retrieved from http://knowledge.electrochem.org/encycl/art-p02-elact-pol.htm
9.Freemantle, M. (1998). Designer solvents-Ionic liquids may boost clean technology development. Chemical & engineering news, 76 (13), 32-37.
10.Kikuchi, K., & Tsuchitani, S. (2009). Nafion®-based polymer actuators with ionic liquids as solvent incorporated at room temperature. Journal of Applied Physics, 106 (5), 053519.
11.Konka, H. P., Wahab, M., & Lian, K. (2012). On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors. Journal of Engineering Materials and Technology, 134 (1), 011010.
12.Kwon, K.-S., & Ng, T. N. (2014). Improving electroactive polymer actuator by tuning ionic liquid concentration. Organic Electronics, 15 (1), 294-298.
13.KEYSIGHT TECHNOLOGIES (2015). Function generator Retrieved from http://www.keysight.com/main/techSupport.jspx?nid=-536902257.536883183&pageMode=PL&lc=cht&cc=TW
14.Melvin, G. J. H., Ni, Q.-Q., & Natsuki, T. (2014). Fabrication and characterization of polymer-based electroactive nanocomposite actuator. Microelectronic Engineering, 126, 9-12.
15.Make (2010). Airship controlled by electroactive polymers Retrieved from http://makezine.com/2010/04/18/airship-controlled-by-electroactive/
16.SIGMA-ALDRICH (2015). Ionic Liquid Retrieved from https://www.sigmaaldrich.com/taiwan.html
17.SIGMA-ALDRICH (2015). Nafion® perfluorinated membrane Retrieved from http://www.sigmaaldrich.com/catalog/product/aldrich/274674?lang=en®ion=TW
18.SIGMA-ALDRICH (2015). Triton-X Retrieved from http://www.sigmaaldrich.com/catalog/product/fluka/93420?lang=en®ion=TW
19.Takeuchi, I., Asaka, K., Kiyohara, K., Sugino, T., Mukai, K., & Randriamahazaka, H. (2010). Electrochemical impedance spectroscopy and electromechanical behavior of bucky-gel actuators containing ionic liquids. The Journal of Physical Chemistry C, 114 (34), 14627-14634.
20.Tamagawa, H., Lin, W., Kikuchi, K., & Sasaki, M. (2011). Bending control of Nafion-based electroactive polymer actuator coated with multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 156 (1), 375-382.
21.Tikalon (2011). Transparent and Conductive Retrieved from http://tikalon.com/blog/blog.php?article=2011/ITO
22.WorldWide ElectroActive Polymers (2008). Artificial Muscles Newsletter Retrieved from http://ndeaa.jpl.nasa.gov/nasa-nde/newsltr/WW-EAP_Newsletter10-2.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊