跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾柏元
研究生(外文):Tseng,Po-Yuan
論文名稱:改善電化學聚合PEDOT之穩定性及其奈米金修飾PEDOT/Pt電極於DNA生物感測器之應用
論文名稱(外文):Improving the stability of electrochemical synthesized PEDOT film and fabricating a gold nanoparticle modified PEDOT/Pt electrode for DNA biosensor
指導教授:顧野松
指導教授(外文):Yesong Gu
口試委員:杜景順
口試委員(外文):Jing-Shan Do
口試日期:2015-01-22
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:151
中文關鍵詞:生物感測器金奈米粒子聚二氧乙烯噻吩聚苯乙烯磺酸鈉道諾霉素微分脈衝伏安法
外文關鍵詞:biosensorgold nanoparticlesPEDOTPSSdaunomycinDifferential Pulse Voltammetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電化學聚合法(循環伏安法, CV),於白金絲上聚合導電高分子聚二氧乙烯噻吩(PEDOT),並將金奈米粒子修飾於PEDOT膜上,作為固定探針DNA的橋梁,再以修飾硫醇基(-SH)之探針DNA自組裝在金奈米粒子上,雜合目標DNA,並以道諾霉素(DNM)作為電化學指示劑,最後利用微分脈衝伏安法(DPV)感測訊號。
本研究首先探討製備AuNPs/PEDOT/Pt電極之條件,包含DNA濃度、DNM濃度、聚合圈數與聚合速率等對其背景電流的影響,並使用掃描式電子顯微鏡(SEM)觀察其表面形態。結果得知,以聚合圈數為2圈,聚合速率為0.05 V/s製備之AuNPs/PEDOT/Pt電極,利用DPV法能明顯感測接合道諾黴素之DNA訊號,然而感測後發現PEDOT膜產生裂痕與脫落現象,造成電極再現性與穩定性不佳。
為改善上述現象,研究於PEDOT聚合時,摻雜聚苯乙烯磺酸鈉(PSS),並探討AuNPs/PEDOT/PEDOT:PSS/Pt電極之穩定性及作為DNA生物感測器的應用。結果發現,其電極表面平坦且金奈米粒子均勻分散於PEDOT膜上,電極穩定性也明顯提高。感測不同濃度(1 nM~100 nM)的完全互補之目標DNA有良好的線性關係,檢測靈敏度為0.0076 μA nM-1。為了提升電極之靈敏度,於電解質溶液中添加電子傳遞介質NAD+。結果顯示,當完全互補之目標DNA濃度介於0.1 nM~1.0 nM範圍內,感測靈敏度可達2.7026 μA nM-1。通過反複雜合與再生檢驗,波峰電流與再生前幾乎一致,說明該感測器有良好的再生性,可多次使用。

關鍵字:生物感測器、金奈米粒子、聚二氧乙烯噻吩、聚苯乙烯磺酸鈉、道諾霉素、微分脈衝伏安法

In this study, the platinum electrode was used as the substrate to build the electrochemical biosensor. At first, the conductive polymer PEDOT was electrochemically polymerized on the platinum electrode. After that, we used gold nanoparticles modified PEDOT film, then the probe DNA(HS-ssDNA) was immobilized on the gold nanoparticles surface by gold-sulphur interaction. The target DNA hybridized with the probe DNA, and immersed in a DNM solution to allow the DNM molecule into GC base pairs. After that, CH Instruments was employed to detect the electron transmit in the DNA by differential pulse voltammetry (DPV).
First of all, we discussed the polymerization conditions of AuNPs/PEDOT/Pt electrode (DNA concentration, DNM concentration, cycles, and scan rate, etc.), and observe the electrode surface by SEM. The results showed that used 2 cycles and scan rate 0.05 V/s can detect DNM oxidation peak at 0.35 V, however, when the potential range about 0.2 V to 0.7 V, the PEDOT film was crack and shedding, resulting the electrode was unstable.
In order to improve the above-mentioned phenomenon, dopping with polystyrene sulfonate (PSS) at the time of polymerization of PEDOT. The result indicated that the electrode surface was smooth and gold nanoparticles spread PEDOT films uniformly. Also, the PEDOT films does not crack and fall off. The results has demonstrated that the AuNPs/PEDOT/PEDOT:PSS/Pt electrode exhibited a nice linear correlation between the peak current and the concentration of target DNA in the range of 1 nM~100 nM. Furthermore, in order to enhance the sensitivity of the electrode and the lowest detection limit, adding mediator NAD+ in the electrolyte solution.
When the complementary target DNA concentration in the range of 0.1 nM ~ 1.0 nM had a good linear relationship with peak current, the sensitivity was 2.7026μA nM-1. Through DNA hybridization repeatedly, the peak current was almost the same. The result indicated that the sensor has a good reproducibility and can be used repeatedly.

Key words: biosensor, gold nanoparticles, PEDOT, PSS, daunomycin, Differential Pulse Voltammetry

中文摘要 II
Abstract IV
目錄 VI
圖目錄 XII
表目錄 XIX
第一章 緒論 1
第二章 文獻回顧 2
2.1 生物感測器簡介 2
2.2 電化學DNA生物感測器簡介 5
2.3 奈米材料、奈米效應與奈米特性簡介 8
2.3.1 奈米材料 8
2.3.2 奈米效應 8
2.3.3 奈米特性 10
2.4 金奈米粒子簡介 12
2.4.1 金奈米粒子的特性 12
2.4.2 金奈米粒子的合成 14
2.5 聚二氧乙烯噻吩簡介 18
2.6 聚苯乙烯磺酸鈉簡介 20
2.7導電DNA簡介 21
2.7.1 影響DNA電子傳遞的因素 23
2.8 電化學雜合指示劑簡介 24
2.8.1 道諾霉素簡介 25
第三章 實驗架構簡介 27
第四章 實驗藥品、設備與方法 30
4.1 實驗儀器 30
4.2 實驗藥品 32
4.3 DNA引子 34
第五章 金奈米粒子之製備 35
5.1 實驗目的 35
5.2 實驗原理 36
5.3 實驗步驟 38
5.3.1 實驗裝置 38
5.3.2 粒徑為16 nm之金奈米粒子製備步驟 38
5.4 實驗結果與討論 40
5.4.1 以檸檬酸鈉還原法製備金奈米粒子 40
5.4.2 金奈米粒子的吸收光譜圖 41
5.4.2.1改變檸檬酸鈉反應量製備出不同粒徑之金奈米粒子 43
5.4.2.2改變反應溫度對製備金奈米粒子之影響 45
5.4.2.3 穿透式電子顯微鏡觀測金奈米粒子 47
第六章 探討以AuNPs/PEDOT/Pt電極為DNA生物感測器之材料 49
6.1 實驗目的 49
6.2 實驗原理 51
6.2.1 電化學反應 51
6.2.2 伏安法 54
6.2.2.1 循環伏安法 55
6.2.2.2 微分脈衝伏安法 56
6.2.3 聚二氧乙烯噻吩電化學聚合原理 58
6.2.4聚二氧乙烯噻吩膜修飾金奈米粒子 59
6.3 實驗步驟 60
6.3.1 參考電極之製備 60
6.3.2 白金絲之前處理 61
6.3.3 PEDOT/Pt電極之製備 61
6.3.4 AuNPs/PEDOT/Pt電極之製備 63
6.3.5 DNA感測器探針之固定與感測完全互補DNA 63
6.3.6 改變PEDOT/Pt電極CV聚合圈數與聚合速率對背景電流之影響 65
6.4 實驗結果與討論 67
6.4.1 PEDOT/Pt電極之製備 67
6.4.2 白金絲聚合PEDOT與金奈米粒子修飾PEDOT/Pt電極導電
度之差異 69
6.4.3 AuNPs/PEDOT/Pt電極之表面形態觀察 71
6.4.3.1 白金絲上聚合PEDOT後之表面形態 71
6.4.3.2 PEDOT/Pt電極修飾金奈米粒子後之表面形態 73
6.4.4 DNA於AuNPs/PEDOT/Pt電極上對感測之探討 76
6.4.4.1 AuNPs/PEDOT/Pt電極製備過程 76
6.4.4.2 DNA於電極上對感測之影響 79
6.4.5 改變PEDOT/Pt電極CV聚合圈數與聚合速率對背景電流之影響 84
6.4.5.1 八種不同聚合速率與圈數之電極的表面形態 85
6.4.5.2 八種不同聚合速率與圈數之電極的背景電流 96
6.4.6小結 100
第七章 探討以AuNPs/PEDOT/PEDOT:PSS/Pt電極為DNA生物感測器之材料 101
7.1 實驗目的 101
7.2 實驗原理 102
7.2.1 聚合溶液中摻雜聚苯乙烯磺酸鈉 102
7.2.2電子傳遞介質(electron mediator) 105
7.3 實驗步驟 107
7.3.1 PEDOT:PSS/Pt電極之製備 107
7.3.2 PEDOT/PEDOT:PSS/Pt電極之製備 108
7.3.3 AuNPs/PEDOT/PEDOT:PSS/Pt電極之製備 108
7.3.4 DNA感測器探針之固定與感測完全互補DNA 109
7.3.5 電解質溶液加入電子傳遞介質以提升感測訊號 110
7.4 實驗結果與討論 111
7.4.1 AuNPs/PEDOT/PEDOT:PSS/Pt電極之性質分析 111
7.4.1.1 AuNPs/PEDOT/PEDOT:PSS/Pt電極的製備過程 111
7.4.1.2 AuNPs/PEDOT/PEDOT:PSS/Pt電極之表面形態 115
7.4.1.3 AuNPs/PEDOT/PEDOT:PSS/Pt電極之背景電流及穩定性 121
4.4.2 感測不同濃度之完全互補目標DNA及DNA感測器之靈敏度 128
4.4.2.1 感測不同濃度之完全互補目標DNA 128
4.4.2.2 利用電子傳遞介質以提升電極之靈敏度 131
4.4.2.3 DNA感測器之再生 135
4.4.3 小結 140
第八章 結論與建議 141
8.1 結論 141
8.1.1 金奈米粒子之製備與分析 141
8.1.2 以AuNPs/PEDOT/Pt為DNA生物感測器之電極 141
8.1.3以AuNPs/PEDOT/PEDOT:PSS/Pt為DNA生物感測器之電極 142
8.2 建議 145
參考文獻 146
作者簡介 151
Bobacka, J., Lewenstam, A., & Ivaska, A. (2000). Electrochemical impedance spectroscopy of oxidized poly (3, 4-ethylenedioxythiophene) film electrodes in aqueous solutions. Journal of Electroanalytical Chemistry, 489(1), 17-27.
Bohren, C. F., & Huffman, D. R. (2008). Absorption and scattering of light by small particles: John Wiley & Sons.
Boon, E. M., & Barton, J. K. (2002). Charge transport in DNA. Current opinion in structural biology, 12(3), 320-329.
Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc., Chem. Commun.(7), 801-802.
Byfield, M., & Abuknesha, R. (1994). Biochemical aspects of biosensors. Biosensors and Bioelectronics, 9(4), 373-399.
Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 102(1), 29-45.
Cosnier, S., Galland, B., Gondran, C., & Le Pellec, A. (1998). Electrogeneration of biotinylated functionalized polypyrroles for the simple immobilization of enzymes. Electroanalysis, 10(12), 808-813.
Dietrich, M., Heinze, J., Heywang, G., & Jonas, F. (1994). Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. Journal of Electroanalytical Chemistry, 369(1), 87-92.
Frederick, C. A., Williams, L. D., Ughetto, G., Van der Marel, G. A., Van Boom, J. H., Rich, A., & Wang, A. H. (1990). Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry, 29(10), 2538-2549.
Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, 241(105), 20-22.
Gorton, L., Csöregi, E., Dominguez, E., Emneus, J., Jönsson-Pettersson, G., Marko-Varga, G., & Persson, B. (1991). Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes. Analytica Chimica Acta, 250, 203-248.
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., & Reynolds, J. R. (2000). Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials, 12(7), 481-494.
Groenendaal, L., Zotti, G., Aubert, P. H., Waybright, S. M., & Reynolds, J. R. (2003). Electrochemistry of Poly (3, 4‐alkylenedioxythiophene) Derivatives. Advanced Materials, 15(11), 855-879.
Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8), 876-921.
Hajian, R., Shams, N., & Parvin, A. (2009). DNA‐binding Studies of Daunorubicin in the Presence of Methylene Blue by Spectroscopy and Voltammetry Techniques. Chinese Journal of Chemistry, 27(6), 1055-1060.
Jonas, F., & Morrison, J. (1997). 3, 4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties. Synthetic Metals, 85(1), 1397-1398.
Kelley, S. O., Barton, J. K., Jackson, N. M., & Hill, M. G. (1997). Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate chemistry, 8(1), 31-37.
Kelley, S. O., Boon, E. M., Barton, J. K., Jackson, N. M., & Hill, M. G. (1999). Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 27(24), 4830-4837.
Kirchmeyer, S., & Reuter, K. (2005). Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene). Journal of Materials Chemistry, 15(21), 2077-2088.
Leng, F., Savkur, R., Fokt, I., Przewloka, T., Priebe, W., & Chaires, J. B. (1996). Base specific and regioselective chemical cross-linking of daunorubicin to DNA. Journal of the American Chemical Society, 118(20), 4731-4738.
Liu, K., Pang, H., Zhang, J., Huang, H., Liu, Q., & Chu, Y. (2014). Synthesis and characterization of a highly stable poly (3, 4-ethylenedioxythiophene)-gold nanoparticles composite film and its application to electrochemical dopamine sensors. RSC Advances, 4(17), 8415-8420.
Liu, S., Yang, Z., Liu, Z., & Kong, L. (2006). Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe. Analytical biochemistry, 353(1), 108-116.
Mirkin, C. A., Letsinger, R. L., Mucic, R. C., & Storhoff, J. J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382(6592), 607-609.
Pang, D.-W., Zhang, M., Wang, Z.-L., Qi, Y.-P., Cheng, J.-K., & Liu, Z.-Y. (1996). Modification of glassy carbon and gold electrodes with DNA. Journal of Electroanalytical Chemistry, 403(1), 183-188.
Pheeney, C. G., Guerra, L. F., & Barton, J. K. (2012). DNA sensing by electrocatalysis with hemoglobin. Proceedings of the National Academy of Sciences, 109(29), 11528-11533.
Radhakrishnan, S., Sumathi, C., Dharuman, V., & Wilson, J. (2013). Gold nanoparticles functionalized poly (3, 4-ethylenedioxythiophene) thin film for highly sensitive label free DNA detection. Analytical Methods, 5(3), 684-689.
Scouten, W. H., Luong, J. H., & Stephen Brown, R. (1995). Enzyme or protein immobilization techniques for applications in biosensor design. Trends in biotechnology, 13(5), 178-185.
Shi, W., Marcus, S. L., & Lowary, T. L. (2011). Cytotoxicity and topoisomerase I/II inhibition of glycosylated 2-phenyl-indoles, 2-phenyl-benzo thiophenes and 2-phenyl-benzo furans. Bioorganic & medicinal chemistry, 19(1), 603-612.
Skoog, D. A., & West, D. M. (1980). Principles of instrumental analysis (Vol. 158): Saunders College Philadelphia.
Sotzing, G. A., Reynolds, J. R., & Steel, P. J. (1997). Poly (3, 4‐ethylenedioxythiophene)(PEDOT) prepared via electrochemical polymerization of EDOT, 2, 2′‐Bis (3, 4‐ethylenedioxythiophene) (BiEDOT), and their TMS derivatives. Advanced Materials, 9(10), 795-798.
Sun, X., He, P., Liu, S., Ye, J., & Fang, Y. (1998). Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta, 47(2), 487-495.
Teh, H. F., Gong, H., Dong, X.-D., Zeng, X., Lai Kuan Tan, A., Yang, X., & Tan, S. N. (2005). Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Analytica Chimica Acta, 551(1), 23-29.
Toshima, N., & Yonezawa, T. (1998). Bimetallic nanoparticles—novel materials for chemical and physical applications. New Journal of Chemistry, 22(11), 1179-1201.
Tsai, T.-H., Lin, K.-C., & Chen, S.-M. (2011). Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) and gold nanocomposite and its application for hypochlorite sensor. Int. J. Electrochem. Sci, 6, 2672-2687.
Vielstich, W. (2010). Cyclic voltammetry: Wiley Online Library.
Wang, J., Palecek, E., Nielsen, P. E., Rivas, G., Cai, X., Shiraishi, H., . . . Farias, P. A. (1996). Peptide nucleic acid probes for sequence-specific DNA biosensors. Journal of the American Chemical Society, 118(33), 7667-7670.
Wilson, D. W., Grier, D., Reimer, R., Bauman, J. D., Preston, J. F., & Gabbay, E. J. (1976). Structure-activity relation of daunorubicin and its peptide derivatives. Journal of medicinal chemistry, 19(3), 381-384.
Yamato, H., Ohwa, M., & Wernet, W. (1995). Stability of polypyrrole and poly (3, 4-ethylenedioxythiophene) for biosensor application. Journal of Electroanalytical Chemistry, 397(1), 163-170.
陳俊顯、蔡東谷,硫醇自主分子薄膜的形成機制,化學專刊,The Chinese Chem. Soc., Taipei, 60(3) (2002) 391-397.
賴炤銘、李錫隆,奈米材料的特殊效應與應用,化學專刊,The Chinese Chem. Soc., Taipei, 61(4) (2003) 585-597.
蔣曉華、劉偉強、陳建軍、林祥欽,,DNA內電子傳遞特性的研究現況,化學進展,(2007)。
汪慶祥、袁顯龍、焦奎、謝江坤、張波,非標記電化學DNA雜交指示劑,化學進展,(2007)。
賴孟村,DNA生物感測器製備及其於DNA分析之應用,(2007),東海大學。
陳建中,以導電性聚苯胺建構過氧化氫生物感測器之技術及其性質探討,(2009),東海大學。
林彥琇、余政儒、曾韋龍,金奈米材料於感測器之應用,回顧論文,(2010),1-13。
林啟萬、張家禎、莊琮亮、王大欣呂慧歆、劉建昇,表面電漿子共振生物感測器之最新發展,專題報導,(2011),211-221。
胡啓章,電化學原理與方法(二版),台北:五南書局,(2012)。
吳佩靜、黃雅琦、詹揚翔,奈米粒子之合成與應用,專題報導,(2013),119-129。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top