跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:申繼陽
研究生(外文):C.Y Shen
論文名稱:Ti, Zr, Hf底層效應對鐵鉑薄膜結構、內應力與磁性之影響
論文名稱(外文):Effect of Ti, Zr and Hf underlayer on the structure, internal stress, and magnetic properties of FePt films
指導教授:張晃暐
指導教授(外文):H. W. Chang
口試委員:任盛源王昌仁張晃暐林克偉楊安邦魏大華
口試委員(外文):Y.S RenR.C WangH. W. ChangW.K LinB.A YangH.D Wei
口試日期:2014-09-09
學位類別:博士
校院名稱:東海大學
系所名稱:應用物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:189
中文關鍵詞:微結構
外文關鍵詞:microstructure
相關次數:
  • 被引用被引用:4
  • 點閱點閱:377
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用FePt為主要研究材料,以濺鍍方式製備FePt薄膜試片。首先,探討不同底層 ( Ti, Zr, Hf ) 之效應對150 nm厚之Fe45Pt55膜結構、微結構、磁區結構、殘餘應力與磁性之影響。在初鍍態下,所有的薄膜試片均為非序化結構。在單層薄膜中,大規模的L10序化發生在700 oC的熱處理下,且形成強烈的(111)優選方位,矯頑磁力增加到8.6 kOe。另一方面、在雙層薄膜中,大規模的序化發生在500 oC之熱處理條件,導致了更高的矯頑磁力(9.8-12.5 kOe)。具底層的試片不同於單層薄膜的試片,而呈現等方性結構,並產生顆粒狀的表面形貌。而雙層FePt低溫的序化有效降低了晶粒尺寸和磁區的大小,因而增進了磁性晶粒間之交互作用力。此外,底層的加入也誘發了較高的拉伸殘餘應力,雖降低了序化之熱活化能而增進序化,不過,其對序化的影響卻是次要的。底層的加入造成了明顯磁能積的增進,從單層薄膜的9.5 MGOe到Ti, Zr, Hf底層的18.1到20.2 MGOe,提高了110 %之多。其次,藉由降低Fe45Pt55層厚度至20 nm研究Hf底層對其界面之影響。研究結果顯示當雙層薄膜在退火的時候,若溫度較低在400-500 oC,序化提前發生,其界面的擴散並不明顯。然而,當溫度為600-800 oC時,界面的擴散變得非常重要;在700-800 oC時,界面的擴散已從單純的原子混合演變到一個金屬化合物的形成,這個金屬化合物已經證實為Pt50Hf50。這個金屬化合物的形成導致了FePt層內Pt的消耗,所以產生了過量的Fe,又藉由高溫進而形成了Fe3Pt相,導致了FePt層硬磁性的消失。最後,以提高FePt層中鐵的含量至Fe50Pt50,期望得到更高的磁化量值,進而增進磁能積,再將鐵鉑厚度提高到300 nm,使試片的狀況更為接近實際應用的尺度。研究結果顯示當厚度與成份改變時,Hf底層仍具有提高磁能積的效果,儘管磁能積的增進不如之前研究所發現的數據這麼明顯,但是,這種增進仍然是存在的。本文最佳磁性質出現在300 nm Fe50Pt50/10 nm Hf 經600 oC後退火,可得磁能積為23.6 MGOe及矯頑磁力為13.2 kOe。本研究的結果證實以高熔點Ti, Zr,及Hf底層可增進FePt膜之永磁性質,其中以Hf底層之效果最佳,以此簡單方法可提升FePt膜之永磁性質十分具有實際應用的潛力。
FePt with L10 structure shows strong magnetic anisotropy and corrosion resistance, making it become one of the most studied materials in the past decades. Many efforts have been focused on optimizing hard magnetic properties due to the potential of applications for micro-electro-mechanical systems ( MEMS ) and bio-magnets on dentistry. At first, effect of Ti, Zr, and Hf underlayers on the structure, microstructure, internal strain/stress, and magnetic properties of sputter-prepared 150-nm-thick Fe45Pt55 films were studied. The structural results confirm the extensive ordering of FePt in the bilayer films obtained with annealing at temperature ( Ta ) 200 ˚C lower than that at which the single layer film has similar ordering. Microstructure data indicate an obvious grain refinement in the bilayer films. Magnetic force microscopy shows a reduced interaction domain size with M underlayer. We suggest that the intermixing between the FePt and underlayers during the post annealing may lower ordering temperature by stimulating the nucleation of the L10 phase, causing refined grain and magnetic domain sizes, leading to remarkable enhancement in permanent magnetic properties at lower Ta. The optimized ( BH )max of FePt films is greatly enhanced from 9.5 MGOe for single layer to 18.1, 19.8, 20.2 MGOe for Ti-, Zr-, and Hf-underlayered films, respectively. Furthermore, in order to understand effect of Hf underlayer on the FePt/Hf interface, thickness of FePt film is reduced to 20 nm, and their structure and magnetic properties with various post annealing temperature are studied. For both FePt and FePt/Hf samples, the as deposited films are disordered and L10-ordering is triggered by a 400˚C-annealing. At Ta ≥ 600˚C, Hf-Pt intermetallic compound forms with increasing Ta, which consumes Pt in FePt layer and results in the formation of Fe3Pt phase. The film becomes soft magnetic at Ta = 800˚C. The optimized condition of FePt/Hf film is in the Ta range of 500 to 600˚C where the interdiffusion between Hf and FePt layer is not extensive. The value of Hc is 8.9 kOe and Mr is 650-670 emu/cm3. Unlike FePt films, the Hf-undelayered samples show significantly reduced out-of-plane remanent and coercivity. The values for both are around 50% smaller than that of the FePt films. Additionally, Hf underlayer markedly reduces the FePt grain size and narrows the distribution, which enhances magnetic intergrain coupling. Good in-plane magnetic properties are preferred for the uses like a hard biasing magnet in a spintronic device. Finally, in order to obtain higher magnetization and thus enhanced ( BH )max, Fe content is increased to 50 at%, and besides, thickness is increased to 300 nm for applications in MEMS. The experimental results show that Hf underlayer also promote the ordering and thus enhanced ( BH )max of FePt, even the promotion of enhanced ( BH )max is inferior as compared to Fe45Pt55 alloy film system. In this study, the optimal magnetic properties of ( BH )max = 23.6 MGOe and iHc = 13.2 kOe for 300 nm Fe50Pt50/10 nm Hf films post annealed at 600 oC. The results of this study demonstrate that permanent magnetic properties of FePt films can be remarkably improved with Ti, Zr, and Hf underlayers, especially for Hf underlayer and this present simple method to improve magnetic properties of FePt films has potential applications in MEMS
第一章 緒論..........................................................................................1
1-1 前言..........................................................................................1
1-2 永磁材料..................................................................................4
1-3 FePt二元合金之簡介..............................................................8
1-4 文獻回顧................................................................................12
1-5 背景與研究動機....................................................................45
第二章 理論基礎................................................................................48
2-1 磁性來源...............................................................................48
2-1-1 電子磁矩...............................................................................48
2-1-2 原子磁矩...............................................................................49
2-2 磁性體分類...........................................................................50
2-2-1 反磁性 ( diamagnetism ).......................................................50
2-2-2 順磁性 ( paramagnetism ).....................................................51
2-2-3 鐵磁性 ( ferromagnetism )....................................................51
2-2-4 反鐵磁性 ( antiferromagnetism ).........................................53
2-2-5 陶鐵磁性 ( ferrimagnetism )................................................53
2-3 磁滯曲線.................................................................................55
2-4 磁異向性.................................................................................58
2-5 硬磁性質.................................................................................62
2-5-1 飽和磁化量 ( 4πMs或Js )....................................................62
2-5-2 剩磁 ( Br ).............................................................................63
2-5-3異向性場 ( HA ).....................................................................64
2-5-4 矯頑磁力...............................................................................66
2-5-5 磁能積 ( BH )max...................................................................69
2-6 薄膜成長理論.......................................................................73
2-6-1 成長機制...............................................................................73
2-6-2 薄膜成長模式.......................................................................76
2-6-3 影響薄膜成長的因素...........................................................77
2-6-4 薄膜的結構...........................................................................81
2-7 薄膜殘留應力.........................................................................83
第三章 實驗過程與方法..................................................................85
3-1 實驗流程.............................................................................85
3-1-1 基板清洗.............................................................................86
3-2 薄膜磁控濺鍍.....................................................................87
3-2-1 薄膜沉積...........................................................................91
3-3 快速熱退火 (RTA)...............................................................93
3-4 膜厚分析...............................................................................94
3-5 成份分析...............................................................................95
3-6 X光繞射儀 ( XRD )............................................................97
3-7 掃描式電子顯微鏡(SEM)...............................................99
3-8 穿透式電子顯微鏡(TEM)..................................................101
3-9 原子力顯微鏡 (AFM)與磁力顯微鏡 (MFM).................104
3-10 震動樣品測磁儀(Vibrating Sample Magnetometer,VSM)
..............................................................................................108
第四章 Fe45Pt55 /M膜結構與磁性之研究 ( M = None, Ti, Zr, Hf )
.........................................................................................110
4-1 Fe45Pt55膜於不同後退火溫度之結構與磁性之研究...111
4-1-1 Fe45Pt55膜於不同後退火溫度之XRD結構分析
.........................................................................................111
4-1-2 Fe45Pt55膜於不同後退火溫度之SEM表面結構分析..112
4-1-3 Fe45Pt55膜於不同後退火溫度之磁性分析.....................113
4-2 Ti底層效應對Fe45Pt55膜於不同後退火溫.度之結構與磁性
之影響................................................................................115
4-2-1 Fe45Pt55/Ti於不同後退火溫度之XRD結構分析.........115
4-2-2 Fe45Pt55/Ti膜於不同後退火溫度之SEM表面結構分析
...........................................................................................116
4-2-3 Fe45Pt55/Ti膜於不同後退火溫度之磁性分析...............117
4-3 Zr底層效應對Fe45Pt55膜於不同後退火溫度之結構與磁性
之影響................................................................................119
4-3-1 Fe45Pt55/Zr膜於不同後退火溫度之XRD結構分析.....119
4-3-2 Fe45Pt55/Zr膜於不同後退火溫度之SEM表面結構分析
............................................................................................120
4-3-3 Fe45Pt55/Zr膜於不同後退火溫度之磁性分析................ 121
4-4 Hf底層效應對Fe45Pt55膜於不同後退火溫度之結構與磁性
之影響…….........................................................................123
4-4-1 Fe45Pt55/Hf膜於不同後退火溫度之XRD結構分析.......123
4-4-2 Fe45Pt55/Hf膜於不同後退火溫度之SEM表面結構.......124
4-4-3 Fe45Pt55/Hf膜於不同後退火溫度之磁性分析.................125
4-5 底層效應對Fe45Pt55膜結構與磁性之影響......................127
4-5-1 Fe45Pt55/M膜結構及表面結構分析..................................127
4-5-2 Fe45Pt55/M膜磁性分析......................................................128
4-5-3 Fe45Pt55/M膜微觀組織分析..............................................131
4-5-4 Fe45Pt55/M膜磁區觀測......................................................133
4-5-5 Fe45Pt55/M膜內應力分析..................................................134
4-6 小結....................................................................................153
第五章 FePt /Hf膜結構與磁性之研究........................................154
5-1 20 nm FePt/Hf 膜結構與磁性之研究...........................155
5-1-1 20 nm FePt/Hf 膜結構與磁性之研究............................156
5-1-2 20 nm FePt/Hf 膜之表面形貌分析................................160
5-1-3 20 nm FePt/Hf 膜之磁性量測........................................162
5-1-4 20 nm Fe45Pt55/Hf 膜之磁區觀測...................................166
5-1-5 小結.................................................................................167
5-2 300 nm Fe50Pt50/Hf 膜之結構及磁性之研究................168
5-2-1 300 nm Fe50Pt50/Hf膜之結構分析..................................169
5-2-2 300 nm Fe50Pt50/Hf膜之表面形貌分析..........................171
5-2-3 300 nm Fe50Pt50/Hf膜之磁性量測..................................173
5-2-4 300 nm Fe50Pt50/Hf膜之磁區觀測..................................178
5-2-5 小結.................................................................................180
第六章 結論...................................................................................181
參考文獻……..................................................................183

[1] 張正武,鐵鉑基奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學博士論文,中華民國97年6月。
[2] M. Hansen, “Constitution of Binary Alloys”, McGraw. N.Y., P.698 (1958).
[3] K. Watanabe, T. Kaneko and S. Ohnuma, Mater. Trans. JIM. 35, 136 (1994).
[4] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
[5] U. Kawald, W. Zemke, H. Bach, J. Pelzl and G. A. Saunders, Phsyica B 161, 72 ( 1989 ).
[6] G. Asti and S. Rinaldi, Phys. Rev. Lett. 28, 1584 ( 1972 ).
[7] K. Watanabe, and H. Masumoto, Trans. Jpn. Inst. Met. 24, 627 (1983).
[8] K. Watanabe, IEEE Trans. Magn. MAG-23, 3196 ( 1987 ).
[9] K. Watanabe, and H. Masumoto, Trans. Jpn. Inst. Met. 26, 36 ( 1985 ).
[10] K. Watanabe, Trans. Jpn. Inst. Met. 51, 91 ( 1987 ).
[11] K. Watanabe, Trans. Jpn. Inst. Met. 32, 292 ( 1991 ).
[12] K. Inomata, T. Sawa, and S. Hashimoto, J. Appl. Phys. 64, 2537 ( 1988 ).
[13] B.Zhang and W. A. Soffa, IEEE Trans. Magn. MAG-26, 1388( 1990 ).
[14] 楊希文,張炎輝,鐵-鉑基合金結構及其磁性探討,國立成功大學博士論文,中華民國82年7月。
[15] Y. Q. Gao, and S. H. Whang, Scr. Metallurgica. Et Materialia. 31, 1583 ( 1994 ).
[16] Kiyoshi Watanabe, Takejiro Kanneko, and Shigehiro Ohnuma, Materials Transcations, JIM. 35, 136 ( 1994 ).
[17] C.W. Chang, H.W. Chang, C.H. Chiu, W.C. Chang, S.K. Chen, and A.C. Sun, J. Magn. Magn. Mater. 292, 120( 2005 ).
[18] C.W. Chang, H.W. Chang, C.H. Chiu, and W.C. Chang, J. Appl. Phys. 97, 10N117 ( 2005 ).
[19] C.W. Chang, H.W. Chang, C.H. Chiu, C.H. Chen, W.C. Chang, H. Ouyang, C.C. Liu, J. Magn. Magn. Mater. 310, 2593 ( 2007 ).
[20] C. W. Chang, H. W. Chang, C. H. Chiu, and W. C. Chang, J. Appl. Phys. 97, 10N117 ( 2005 ).
[21] C.W. Chang, H.W. Chang, C.H. Chiu, W.C. Chang J. Magn. Magn. Mater. 303, e359 ( 2006 ).
[22] Wei Zhang, Dmitri V. Louzguine, and Akihisa Inoue, Appl. Phys. Lett. 85, 4998 ( 2004 ).
[23] H. W. Chang, C. H. Chiu, C. W. Chung, W.C.Chang, A. C. Sun and Y. D. Yao, Scr. Mater. 55, 529 ( 2006 ).
[24] Y. Long, W. Zhang, X. Wang and A. Inoue, J. Appl. Phys. 91, 5227 ( 2002 ).
[25] C. W. Chang, H. W. Chang, C. H. Chiu, C. Hsieh, Y. K. Fang, and W. C. Chang, J. Appl. Phys. 103, 07E133 ( 2008 ).
[26] J. A. Aboaf, S. R. Herd, and E. Klokholm, IEEE Trans. Magn. 19, 1514 ( 1983 ).
[27] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada, and G. R. Harp, J. Appl. Phys. 79, 5967 ( 1996 ).
[28] R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, David J. Smith and M. R. McCartney, J. Appl. Phys. 84,934 ( 1998 ).
[29] T. Shima, T. Moriguchi, S. Mitani, K. Takanashi, Appl. Phys. Lett. 80, 288 ( 2002 ).
[30] T. Shima, T. Moriguchi, T. Seki, S. Mitani, and K. Takanashi, J. Appl. Phys. 93, 7238 ( 2003 ).
[31] D. H. Wei, S. C. Chou, and T. S. China, C. C. Yu, Y. Liou, and Y. D. Yao, J. Appl. Phys. 97, 10N120 ( 2005 ).
[32] J. K. Mei, D. H. Wei, and Y. D. Yao, Phys. Stat. Sol. (a) 204, 4153 ( 2007 ).
[33] D. H. Wei, F. T. Yuan, H. W. Chang, K. L. You, Y. Liou, Y. D. Yao and J. K. Wu, J. Appl. Phys. 103, 07E116 ( 2008 ).
[34] Y. K. Takahashi, T. Ohkubo, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7166 ( 2003 ).
[35] Y. K. Takahashi, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7580 ( 2003 ).
[36] Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95, 2690 ( 2004 ).
[37] Y. K. Takahashi, T. O. Seki, K. Hono, T. Shim and K. Takanashi, J. Appl. Phys. 96, 475 ( 2004 ).
[38] Y. Peng, J.-G. Zhu, and D. E. Laughlin, J. Appl. Phys. 99, 08F907 ( 2006 ).
[39] A. Martins, M. C. A. Fantini, and A. D. Santos, J. Magn. Magn. Mater. 265, 13 ( 2003 ).
[40] Y. C. Wu, L. W. Wang, and C. H. Lai, J. Appl. Phys. 103, 07E140 ( 2008 ).
[41] H. J. Kim and S. Lee, J. Appl. Phys. 97, 10H304 ( 2005 ).
[42] X. Xu, X. Li, and H. Wu, Mater. Sci. Eng., B 121, 183 ( 2005 ).
[43] Y. F. Ding, J. S. Chen, B. C. Lim, J. F. Hu, B. Liu, and G. Ju, Appl. Phys. Lett. 93, 032506 ( 2008 ).
[44] Y. C. Wu, L. W. Wang, M. T. Rahman, and C. H. Lai, J. Appl. Phys. 103, 07E126 ( 2008 ).
[45] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 93, 242501 ( 2008 ).
[46] Jin Ling- Fang and Yan Ming-Lang, Chin. Phys. Lett. 24, 2628 ( 2007 ).
[47] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 91, 072502 ( 2007 ).
[48] Jae-Song Kim, Yang-Mo Koo, Byeong-Joo Lee, and Seong-Rae Lee, J. Appl. Phys.99, 053906 ( 2006 ).
[49] M. L. Yan, Y. F. Xu, and D. J. Sellmyer, J. Appl. Phys. 99, 08G903 ( 2006 ).
[50] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, and J. P. Wang, Appl. Phys. Lett. 88, 052503 ( 2006 ).
[51] J. S. Chen, B. C. Lim, and T. J. Zhou, J. Vac. Sci. Technol. A 23, 184 ( 2005 ).
[52] An-Cheng Sun P. C. Kuo, Jen-Hwa Hsu, H. L. Huang, and Jui-Ming Sun, J. Appl. Phys. 98, 076109 ( 2005 ).
[53] P. Rasmussen, X. Rui, and J. E. Shield, Appl. Phys. Lett. 86, 191915 ( 2005 ).
[54] M. L. Yan, Y. F. Xu, X. Z. Li, and D. J. Sellmyer, J. Appl. Phys. 97, 10H309 ( 2005 ).
[55] T. Aoyama, I. Sato, H. Ito, and S. Ishio, J. Magn. Magn. Mater. 287, 209 ( 2005 ).
[56] M. L. Yan, R. F. Sabirianov, Y. F. Xu, X. Z. Li, and D. J. Sellmyer, IEEE Trans. Magn.40, 2470 ( 2004 ).
[57] Y. Itoh, T. Aoyagi, A. Tsukamoto, K. Nakagawa, A. Itoh, and T. Katayama, J. J. Appl. Phys. 43, 8040 ( 2004 ).
[58] T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, Y. K. Takahashi and K.Hono, J. Appl. Phys. 96, 1127 ( 2004 ).
[59] H. Zeng, Shouheng Sun, R.L. Sandstrom, and C.B. Murray, J. Magn. Magn. Mater. 266, 227 ( 2003 ).
[60] T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, and K. Hono, Appl. Phys. Lett. 82, 2461 ( 2003 ).
[61] Z. G. Zhang, K. Kang, and T. Suzuki, Appl. Phys. Lett. 83, 1785 ( 2003 ).
[62] K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 82, 3284 ( 2003 ).
[63] Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 93, 8152 (2003).
[64] H. Zeng, M. L. Yan, N. Powers, and D. J. Sellmyer, Appl. Phys. Lett. 80, 2350 ( 2002 ).
[65] D. J. Sellmyer, C. P. Luo, M. L. Yan, and Y. Liu, IEEE Trans. Magn. 37,1286 ( 2001 ).
[66] D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, Appl. Phys. Lett. 76, 236 ( 2000 ).
[67] S. Jeong, Y. Hsu, D. E. Laughlin, and M. E. McHenry, IEEE Trans. Magn. 36, 2336 ( 2000 ).
[68] J.-U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, J. Appl. Phys. 84, 5686 ( 1998 ).
[69] M. L. Yan, N. Powers, and D. J. Sellmyer, J. Appl. Phys. 93, 8292 ( 2003 ).
[70] S. N. Hsiao, F. T. Yuan, H. W. Chang, H. W. Huang, S. K. Chen, and H. Y. Lee, Appl. Phys. Lett. 94, 232505 ( 2009 ).
[71] F. T. Yuan, H. N. Hsiao, S. K. Chen, H. W. Chang, K. L. You, and Y. D. Yao, Phys. Stat. Sol. (a) 204, 4162 ( 2007 ).
[72] F.T. Yuan, S.N. Hsiao, H.W. Chang, W.M. Liao, S.K. Chen, Y.D. Yao, J. Magn. Magn. Mater. 310, e777 ( 2007 ).
[73] F.T. Yuan, H.W. Huang, H.W. Chang, D.H. Wei, S.K. Chen, and Y.D. Yao, IEEE Trans. Magn. 44, 4195 (2008).
[74] J.P. Liu, C.P. Luo, Y. Liu, and D.J. Sellmyer, Appl. Phys. Lett. 72, 483 (1998).
[75] B. D. Cullity, “Introduction to Magnetic Materials”, Massachusetts: Addison-Wesley, CH6. 194( 1972 ).
[76] Umit Ozgur, Microwave Magnetic ferrites, part 1: fundamental properties. ”J. Mater. Sci. Mater. Electron 20, 789 ( 2009 ).
[77] 石富,稀土永磁材料製備技術,冶金工業出版社 ( 2007 )。
[78] 張晃暐,國立中正大學物理研究所博士論文 (2004)。
[79] 卓信誠,半導體與積體電路製造技術,科技圖書股份有限公司 (1990)。
[80] L. Eckertova, T. Ruzicka, Diagnostics and Applications of Thin Films, Ch. 1& 2, Institute of Physics Publishing, (1993).
[81] 莊達仁,VLSI製造技術,高立圖書有限公司(2000)。
[82] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman & Hall (1992).
[83] 陳元宗,國立台灣科技大學機研所碩士論文 (2003)。
[84] 黃榮俊,物理雙月刊,十七卷六期,663-973 (1982)。
[85] 陳宿惠,國立台灣師範大學物理所碩士論文 (1999)。
[86] Jone L,Vossen, Werner Kern, Thin Film processes, Princetion,New Jersey, 1978.
[87] 魏炯權,電子材料工程,全華圖書股份有限公司(2011)。
[88] 羅吉宗,薄膜科技與應用,全華圖書出版社 ( 2009 )。
[89] 田士宏,以脈衝雷射沉積法製備BiFeO3薄膜於玻璃基板上及其結構與鐵電性之研究,東海大學物理學系碩士論文,中華民國102年7月。
[90] 陳炳翰,以濺鍍法製備BiFeO3薄膜於玻璃基板上及其結構與鐵電性之研究,東海大學應用物理系碩士論文,中華民國102年12月。
[91] S.N. Hsiao, S.K. Chen, F.T. Yuan, H.W. Huang, C.W. Hsu, Y.D. Yao, and H.Y. Lee, IEEE Trans. Magn. 43, 870 (2007).
[92] 梅瑞國,鐵鉑薄膜經快速熱退火處理後之結構、相變、優選方位與內應力之研究,大同大學材料工程博士論文,269-274,中華民國100年12月。
[93] C.Y. Shen , H.W. Chang, F.T. Yuan, M.C. Lin, C.C. Su, H.H. Yeh, M.F. Huang ,C.R. Wang, C.W. Shih, W.C. Chang, Applied Surface Science 313 (2014) 755–761.
[94] C. Y. Shen , H. W. Chang , F. T. Yuan , M.C. Lin , C.C. Su , C.R. Wang , J.K. Mei , C.C. Chen , and W. C. Chang, IEEE Transactions on Magnetics, vol. 50, No. 1, January 2014.
[95] C.Y. Shen , F.T. Yuan , H.W. Chang , M.C. Lin , C.C. Su, S.T. Chang , C.R. Wang , J.K. Mei , S.N. Hsiao, C.C. Chen, C.W. Shih , W.C. Chang , Journal of Magnetism and Magnetic Materials 358-359(2014)153–158.







QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊