(34.237.124.210) 您好!臺灣時間:2021/03/02 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李貫中
研究生(外文):Kuan-Chung Li
論文名稱:以幾丁聚醣和卵磷脂高壓均質製備次亞麻油酸-維生素E 單/雙層奈米乳滴乳化液之研究
論文名稱(外文):Preparation and Characterization of Linolenic acid-Vitamin E Nano droplet Emulsion Using Chitosan and Lecithin as Emulsifiers by High Pressure Homogenization
指導教授:阮進惠阮進惠引用關係
指導教授(外文):Jin-Hewi Rwan,Ph.D.
口試委員:吳明昌徐詮亮
口試委員(外文):Ming-Chang WuChuan-Liang Hsu
口試日期:2015-01-19
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:137
中文關鍵詞:幾丁聚醣卵磷脂乳化安定性奈米乳滴過氧化價穿透式電子顯微鏡
外文關鍵詞:ChitosanLecithinEmulsifying stabilityNano dropletPOVTEM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
將幾丁聚醣(chitosan, CS, ≧85%去乙醯度)溶於0.1 M醋酸至0.5% 濃度並調至pH 6.0。將次亞麻油酸(linolenic acid, LNA, ω-3)及維生素E (vitamin E, Vit. E) 依比例200:1(w/w)混合後溶於正己烷(hexane) 至不同濃度(1000:5、1500:7.5、2000:10、2250:11.25及2500:12.5 ,w/w, mg),並個別加入100 mL CS溶液LNA-Vit. E溶液,先以旋轉式均質機 ( Polytron homogenizer ) 進行粗乳化(轉速13500 rpm , 2min,再以高壓均質機(APV homogenizer)於不同均質壓力(500、1000及1500 bar)及不同乳化循環次數(1至10次)下乳化製成CS-LNA-Vit. E奈米乳滴乳化液,測定其液滴大小(droplet size)、表面電位(zeta potential),然後選出能製備較小乳滴及高表面電位之乳化液之條件(即LNA/ Vit. E濃度、乳化壓力及乳化循環次數),進行製備其奈米乳滴乳化液後,於25℃下儲存28天,並測定其安定性,包括乳滴大小、油水分離、表面電位及過氧化價(peroxide value, POV)變化。另外,將1000: 5、1500:7.5、2000:10、2250:11.25及2500:12.5, w/w mg LNA-Vit.E分別與0.25、0.375、0.5、0.562、0.625 g卵磷脂(lecithin, Le)混和,行初乳化後分別加入CS溶液,再行第二次初乳化,依最適均質壓力及乳化循環次數製備CS-Le-LNA-Vit. E奈米乳滴乳化液,並測定其乳滴大小、表面電位及儲存安定性。最後本實驗亦以穿透式電子顯微鏡(TEM)照相觀察比較 CS-LNA-Vit. E及CS-Le-LNA-Vit. E乳化液之乳滴。

結果,在CS-LNA-Vit.E奈米乳滴乳化液方面:對1000:5、1500:7.5、2000:10、2250:11.25 (w/w) LNA-Vit. E而言,均質壓力愈大及乳化循環次數愈多,其乳滴愈小,但2500:12.5 mg LNA-Vit. E,則在高壓力下於一定乳化循環之後,會有粒徑不減反增之情形。表面電位方面,LNA-Vit. E量增加使表面電位上升,但均質壓力及乳化循環次數無顯著影響,約+33~36 mV間。將1000: 5- 2500:12.5 (w/w)LNA-Vit.E,各別加入CS溶液後,分別於適合乳化壓力及循環次數下製出具有較小奈米乳滴和較高表面電位之五種乳化液,並測定其在25℃下儲存28天之安定性。其乳化液簡稱為:(1000:5 (w/w) LNA-Vit. E, 1500 bar, 10 passes:A組乳化液)、(1500:7.5 (w/w)LNA-Vit. E, 1500 bar, 10 passes:B組乳化液)、(2000:10(w/w)LNA-Vit. E, 1500 bar, 10 passes:C組乳化液)、(2250:11.25(w/w) LNA-Vit. E, 1500 bar, 10 passes:D組乳化液)和(2500:12.5(w/w) LNA-Vit. E, 1500 bar, 9 passes:E組乳化液)。在油水分離方面,A、B和C組乳化液存放28天無分離現象;D組乳化液存放至20天呈現分離;E組乳化液於第12天存放則出現分離。在乳滴大小變化,A、B、C乳化液於存放期間乳滴漸漸變小(粒徑分別為,A:880 nm→667 nm ; B:941 nm→723 nm ; C:853 nm→754 nm),D和E組乳化液乳滴均呈現變大現象。POV方面,將上述5種CS-LNA-Vit. E乳化液於50℃保存0~9天,測POV之變化情形,發現,其POV均變大,最高在第五天,平均約在710-725 meq/Kg,但比未以CS乳化的純LNA- Vit. E脂肪酸較低(約820-860 meq /Kg)。

若將1000: 5- 2500:12.5, (w/w) LNA-Vit. E分別以Le及CS為合併乳化劑乳化為CS-Le-LNA-Vit. E奈米乳滴乳化液,測定其乳滴粒徑、表面電位、安定性及POV。 結果發現,其乳滴粒徑約790-992 nm及表面電位約+46 mV;乳化安定性方面,儲存28天未分離,乳滴粒徑漸漸變小,POV上升緩慢且非常安定(200 meq/Kg)。由此可見,於相同條件下乳化的CS-Le-LNA-Vit. E及CS-LNA-Vit. E乳化液:前者乳滴粒徑粒徑雖略微增大,但表面電位較高(約+46mV),且儲存期間安定性較佳。由此可見,CS與Le合併作為乳化劑,製備雙層膜乳化液, 能顯著增加乳化液之穩定性。此外,透過TEM圖顯示單層膜及雙層膜之乳滴均為完整圓形或橢圓形。

Chitosan (CS,≧85% deacetylation) was dissolved in 0.1 M acetic acid at 0.5% concentration and adjusted to pH 6.0. Linolenic acid (LNA, ω-3)and vitamin E (Vit. E) were mixed at the ratio 1000: 5, 1500:7.5, 2000:10, 2250:11.25 and 2500:12.5 (w/w,mg) in hexane before adding into 100 mL chitosan solution. These mixtures were pre-emulsified by a Polytron homogenizer (13,500 rpm, 2 min) before passed through a high pressure homogenizer (APV) at different pressure (500,1000 and 1500 bar) and recycled in different passes (1~10 passes).The emulsions were determined on the droplet size and electrical charge (Zeta potential). Suitable eemulsifying conditions (i.e., LNA/Vit. E concentration, homogenizing pressure and recycling pass) showed a small droplet and high zeta potential emulsions were applied to prepare the CS-LNA-Vit. E emulsions that were then determined on the emulsion stability during (i.e., oil-water separation, droplet size and peroxide value POV change) during 28 day storage at 25℃. Such homogenizing conditions were also applied for emulsifying with dual emulsifiers of chitosan and lecithin(Le) into CS-Le- LNA-Vit. E nano droplet emulsions which were then determined on the droplet size, Zeta potential and emulsion stability. Nano droplets of CS-LNA-Vit. E and CS-Le-LNA-Vit. E emulsions were also observed by transmission electron microscopy (TEM).

As result, on the CS-LNA-Vit. E emulsion : a higher homogenizing pressure and more number of recycling pass gave smaller droplet size under LNA-Vit. E conditions of 1000: 5- 2250:11.25 (w/w,mg) , but showed a larger droplet size at a conditions of 2500:12.5 (w/w,mg). Zeta potential of the emulsions increased as the LNA-Vit. E concentration increased but not affected by both the homogenizing pressure and more recycling pass (+33~36 mV). Emulsions that were carried out by the following conditions gave a comparation small droplet and high Zeta potential : “A emulsion” (1000:5 w/w,mg LNA-Vit. E, 1500 bar, 10 passes), ” B emulsion” (1500:7.5 w/w,mg LNA-Vit. E, 1500 bar, 10 passes), “ C emulsion” (2000:10 w/w,mg LNA-Vit. E, 1500 bar, 10 passes), “ D emulsion” (2250:11.25 w/w,mg LNA-Vit. E, 1500 bar, 10 passes), “ E emulsion” (2500:12.5 w/w,mg LNA-Vit. E, 1500 bar, 9 passes).These emulsions were determined on their stability. On the oil-water separation, A, B and C emulsions were stable during 28 day storage ; D emulsion showed separation at 20th day, and E emulsion showed separation at the 12th day. On the droplet-size change, A, B and C emulsions showed a decreasing during the storage (A:880 nm→667 nm ; B:941 nm→723 nm ; C:853 nm→754 nm), D and E emulsions showed a gradual larger during the storage. On the POV change, all emulsions gave a increasing POV , about 710-725 meq/Kg at the 5nd day storage at 50℃ while pure LNA-Vit. E showed about 820-860 meq /Kg.

The CS-Le-LNA-Vit. E nano droplet emulsions showed a droplet size in a range of 790-992 nm and zeta potential almost +46 mV.On the emulsion stability, they had no separation and showed a gradually decreasing in droplet size and more stable POV(200 meq/Kg) during the storage. Thus, under the same emulsified conditions, CS-Le-LNA-Vit. E had larger droplet size but higher Zeta potential and more stable in the storage than that of the CS-LNA-Vit. E emulsion . Both CS-Le-LNA-Vit. E droplets and CS-LNA-Vit. E droplets were spherical or oval shapes under TEM observation.

目錄

中文摘要..................................................................................................................................1
英文摘要..................................................................................................................................3
壹、前言..................................................................................................................................5
貳、文獻整理..............................................................................................................................9
一、 幾丁質與幾丁聚醣......................................................................................................................9
(一) 幾丁質(chitin).......................................................................................................................9
(二) 幾丁聚醣(chitosan)...............................................................................................................................12
(三) 幾丁質與幾丁聚醣之結構................................................................................................................12
(四) 幾丁質與幾丁聚醣的晶型架構............................................................................................................15
(五) 幾丁質與幾丁聚醣溶液特性..............................................................................................................19
(六) 幾丁質與幾丁聚醣的製備................................................................................................................21
(七) 幾丁聚醣之物性分析...................................................................................................................26
(八) 幾丁聚醣安全性與法規..................................................................................................................27
(九) 幾丁質與幾丁聚醣之應用................................................................................................................28
二、 乳化................................................................................................................................36
(一) 乳化之原理介紹.......................................................................................................................36
(二) 乳化劑..............................................................................................................................37
(三) HLB (Hydrophilic Lipophilic Balance)值..............................................................................................39
(四) 乳化的方法與乳化液類型................................................................................................................42
(五) 影響乳化安定性的因素..................................................................................................................45
(六) 乳化不安定型態.......................................................................................................................45
三、幾丁聚醣之乳化性質.....................................................................................................................48
(一) 幾丁聚醣乳化相關研究..................................................................................................................48
(二) 幾丁聚醣乳化安定作用..................................................................................................................50
(三) 靜電層沉積法之乳化...................................................................................................................52
四、奈米科技發展..........................................................................................................................55
(一) 奈米科技及顆粒.......................................................................................................................55
(二) 奈米在食品之應用.....................................................................................................................57
(三) 奈米食品之安全研究與管理..............................................................................................................60
(四) 奈米乳滴乳化液乳化原理及相關研究.......................................................................................................62
五、次亞麻酸油(Linolenic acid, LNA).......................................................................................................66
(一) 次亞麻油酸簡介.......................................................................................................................68
(二) 次亞麻油酸之生理作用..................................................................................................................70
(三) 次亞麻油酸氧化.......................................................................................................................72
六、維生素E (Vitamin E, Vit. E)..........................................................................................................74
(一) Vitamin E 簡介......................................................................................................................74
(二) Vitamin E 結構......................................................................................................................74
(三) Vitamin E 之體內吸收.................................................................................................................76
(四) Vitamin E 的抗氧化功能...............................................................................................................76
(五) Vitamin E 的抗氧化代謝與肝中代謝物....................................................................................................77
參、材料與方法............................................................................................................................80
一、實驗材料..............................................................................................................................80
(一) 原料................................................................................................................................80
(二) 藥品................................................................................................................................80
二、實驗儀器..............................................................................................................................81
三、實驗架構..............................................................................................................................82
(一) 以幾丁聚醣(chitosan, CS)為乳化劑製備幾丁聚醣-次亞麻油酸(linolenic acid, LNA)-維生素E(vitamin E, Vit. E)奈米乳滴乳化液之試驗...............82
(二) 以幾丁聚醣(chitosan, CS)及卵磷脂(lecithin, Le)共同乳化劑進行乳化製備幾丁聚醣-次亞麻油酸(linolenic acid, LNA)-維生素E(vitamin E, Vit. E)奈米
乳滴乳化液試驗.......................................................................................................................83
四、材料準備..............................................................................................................................84
(一) 幾丁聚醣之製備.......................................................................................................................84
五、實驗方法..............................................................................................................................84
(一) 以幾丁聚醣(chitosan, CS)為乳化劑製備次亞麻油酸(linolenic acid, LNA)-維生素E(vitamin e, Vit. E)奈米乳滴乳化液之試驗.......................84
(二) 以幾丁聚醣(chitosan, CS)及卵磷脂(lecithin, Le)為合併乳化劑製備次亞麻油酸(LNA)-維生素E(Vit. E)奈米乳滴乳化液之試驗.........................86
六、分析方法..............................................................................................................................87
(一) 幾丁聚醣去乙醯度之測定................................................................................................................87
(二) 乳化液乳滴大小(droplet size)及表面電位(zeta potential)之測定..........................................................................88
(三) 乳化液過氧化價(peroxide value, POV)之測定.............................................................................................88
(四) 穿透式電子顯微鏡 (transmission electronmicroscope, TEM)之照相觀察.....................................................................89
(五) 統計分析............................................................................................................................89
肆、結果與討論............................................................................................................................90
一、幾丁聚醣之製備........................................................................................................................90
二、以幾丁聚醣(CS)為乳化劑製備次亞麻油酸(LNA)-維生素E(Vit. E)奈米乳滴乳化液之特性...........................................................91
(一) 均質壓力(homogenizing pressure)、LNA-Vit. E濃度及均質循環次數(homogenizing cycle number)對(CS-LNA-Vit. E) 乳化液中乳滴大小(droplet size)及
表面電位(zeta potential)之影響......................................................................................................91
(二) CS-LNA-Vit. E奈米乳滴乳化液之安定性...................................................................................................97
三、以幾丁聚醣(CS)及卵磷脂(Le)為共同乳化劑 製備次亞麻油酸-維生素E(LNA- Vit. E)奈米乳滴乳化液(CS- LNA-Vit. E nano droplet emulsion)............105
(一) LNA-Vit. E油量對CS-Le-LNA-Vit. E乳化液乳滴大小(droplet size)、表面電位(zeta potential)之影響..........................................106
(二) CS-Le-LNA-Vit. E奈米乳滴乳化液之安定性...............................................................................................111
四、穿透式電子顯微鏡(TEM)觀察CS-LNA-Vit. E及CS-Le-LNA-Vit. E奈米乳化液外觀型態..............................................................119
伍、結論................................................................................................................................121
一、以 CS 為單獨乳化劑製備 CS-LNA-Vit. E奈米乳滴乳化液.....................................................................................121
二、以 CS 及 Le 為合併乳化劑製備 CS-Le-LNA-Vit. E奈米乳滴乳化液............................................................................121
三、總結................................................................................................................................122
陸、參考文獻.............................................................................................................................123
柒、附錄................................................................................................................................137




圖一、幾丁質、幾丁聚醣及纖維素之架構........................................................................................................14
圖二、α 型幾丁質之立體架構 .................................................................................................................17
圖三、β 型幾丁質之立體架構 .................................................................................................................18
圖四、幾丁聚醣溶液於酸性或鹼性環境下之分子電荷、分散性及分子排列情形...........................................................................20
圖五、幾丁質與幾丁聚醣加工之簡單流程圖......................................................................................................25
圖六、以穿透電子顯微鏡觀察幾丁聚醣對腸道上皮細胞之影響,(a)為Caco-2 細胞正常型態,(b)為經由0.1%幾丁聚醣處理30分鐘後之細胞和
(c)為將幾丁聚醣移除後,繼續培養24小時後之細胞..........................................................................................35
圖七、乳化劑之形態及其種類.................................................................................................................38
圖八、兩相乳化液 (a) 水中油滴型(O/W)或是 (b) 油中水滴型(W/O)。多重相乳化液(c) 以W/O/W 型做說明.............................................44
圖九、乳液的幾種不穩定現象示意圖...........................................................................................................47
圖十、多層膜乳化液使用靜電層沉積法之圖示 (i) 為單層膜 (ii) 為雙層膜(iii)為多層膜..............................................................54
圖十一、具有雙層界面膜(lecithin-chitosan)之乳化液滴製備圖...................................................................................54
圖十二、奈米遞送系統......................................................................................................................56
圖十三、奈米顆粒於腸道吸收之優勢...........................................................................................................56
圖十四、均質機 (a)和均質閥(b)之構造........................................................................................................64
圖十五、Omega-3 不飽和脂肪酸之結構 .........................................................................................................69
圖十六、高度多元不飽和脂肪酸之合成路徑......................................................................................................71
圖十七、不飽和脂肪酸的氧化機制.............................................................................................................73
圖十八、Vitamin E之八種異構體.............................................................................................................75
圖十九、Vitamin E與自由基反應時之代謝途徑及產物結構.........................................................................................78
圖二十、乳化壓力、LNA-Vit. E油量及乳化循環次對乳化液滴大小之影響.............................................................................94
圖二十一、乳化壓力、LNA-Vit.E油量及乳化循環次對乳化液滴表面電位之影響.........................................................................96
圖二十二、CS-LNA-Vit. E乳化液於25°C下保存28天之乳滴粒徑變化 ................................................................................101
圖二十三、CS-LNA-Vit. E乳化液及LNA-Vit. E之POV變化情形....................................................................................104
圖二十四、CS-Le-LNA-Vit. E乳化液於25°C下保存28天之乳滴粒徑變化.............................................................................115
圖二十五、不同油量LNA-Vit. E的CS-Le-LNA-Vit. E及CS-LNA-Vit. E乳化液之POV變化情形...........................................................118
圖二十六、CS-LNA-Vit. E (a)、CS-Le-LNA-Vit. E (b)儲存28天之CS-LNA-Vit.E (c)乳化液之穿透式電子顯微鏡觀察.....................................120


表一、甲殼動物、節足動物、軟體動物、及真菌類之幾丁質含量......................................................................................11
表二、幾丁質三種晶型架構與特性.............................................................................................................16
表三、不同去乙醯程度幾丁聚醣之製備條件......................................................................................................24
表四、幾丁質及幾丁聚醣常見之應用領域........................................................................................................30
表五、HLB值與用途間的關係..................................................................................................................41
表六、必須脂肪酸和多元不飽和脂肪酸的主要食物來源.............................................................................................67
表七、CS-LNA-Vit. E乳化液於 25°C下保存28天之分離情形.......................................................................................99
表八、CS-LNA-Vit. E及CS-Le-LNA-Vit. E乳化液液滴粒徑之比較.................................................................................108
表九、CS-LNA-Vit. E及CS-Le-LNA-Vit. E乳化液表面電位之比較.................................................................................110
表十、CS-LNA-Vit. E及CS-Le-LNA-Vit. E乳化液於25°C下保存28天之分離情形......................................................................112

七田真 (2000)。腦內食品卵磷脂。國際村出版。臺北,臺灣。147-164。
戶田清一 (1990)。キトサソの基礎と應用。防菌防黴。23(7) : 421。
刈米孝夫 原著,王鳳英 編譯 (2003)。界面活性劑的原理與應用。高立圖書有限公司出版
王綺芬 (1989)。蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科技研究所碩士論文。
王鳳英編譯 (1993)。界面活性劑的原理與應用。高立圖書有限公司。
王儷璇 (2007)。幾丁聚醣—精油微膠囊之製備及其對轉糖鏈球菌之抗菌活性。國立臺灣海洋大學食品科學系碩士論文。
江晃榮 (1998)。生物高分子(幾丁質、膠原蛋白)產業現況與展望。財團法人生物 技術開發中心,p. 1-99。
呂朋、李八方及夏蘭 (2001)。殼聚醣在醫藥保健中的應用。中國海洋藥物,20 : 30-34。
何東保、石毅、梁紅波及詹東風 (2002)。殼聚糖─海藻酸鈉協同相互作用及其 凝膠化的研究。武漢大學學報(理學版),48 : 193-196。
何孟溽(2004)。維他命E TPGS 1000於老鼠體內之動態及其對細胞色素3A藥物代謝之影響。國立成功大學臨床藥學研。
吳適 (1979)。乳化劑在食品工業上的應用。食品工業,11: 28-32。
吳俊毅 (2003)。以超臨界二氧化碳萃取海豹油之研究。國立成功大學化學研究 所碩士論文。
李勳宜 (1988)。草蝦幾丁聚醣之製備及其應用研究。國立台灣大學食品科學系 碩士論文。
李續娥、張文學及劉心潔 (1999)。湯劑煎煮法的研究進展。西北藥學雜誌,14: 34。
沈家弘 (2004)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用於沙拉醬之研 究。私立東海大學食品科學研究所碩士論文。
阮進惠 (1984)。脫色豬血血球蛋白之加熱修飾及其在食品上之應用。東海學報,25 :1013-1027。
阮進惠及吳貞誼 (1996)。利用幾丁聚醣脫酸葡萄柚汁。食品科學,23 : 509。
阮進惠及林芬年 (1999)。利用幾丁聚醣脫酸澄清梅汁。中農化誌,37 : 403。
阮進惠及沈家弘 (2006)。不同去乙醯度幾丁聚醣乳化性質之比較及其應用與沙
拉醬之研究。台灣農業化學與食品科學,44 : 41-53。
阮進惠、沈家弘及閻立平 (2008)。加熱及凍結-解凍處理對幾丁聚醣乳化液安定性之影響。台灣農業化學與食品科學,46 : 111-117。
余輝及陳潔 (2007)。可見光光度法測定乳狀液過氧化值的研究。食品科學,28(11) :401-404。
柯建邦 (2006)。不同去乙醯度膠態幾丁聚醣乳化性質之比較及其應用於冰淇淋之研究。私立東海大學食品科學系研究所碩士論文。
周書平 (2013)。以幾丁聚醣或幾丁聚醣和卵磷脂為乳化劑製備次亞麻油酸/亞麻油酸奈米乳滴乳化液及其性質之研究。私立東海大學食品科學系研究所碩士論文。
徐世昌 (2001)。生物性高分子幾丁質與幾丁聚醣之介紹與應用。化工資訊,2:36-45。
徐春 (2006)。殼聚糖在白葡萄酒澄清中的應用研究。中國釀造,1: 21-23。
馬小軍、王一力、包德才、付穎麗、薛偉明、雄鷹、劉袖洞及于煒婷 (2002)。海藻酸鈉/殼聚糖微膠囊生物相容性的研究。自然科學進展,12 : 845-847。
曹晶、孫淑愛及盧鳳琦 (2005)。殼聚糖生物降解性與組織相容性。中國公共衛生,21 : 1411。
孫慧芬 (1993)。卵磷脂之特性與應用。食品工業,25 : 22-25。
孫勇、李華佳、辛志宏及胡秋輝 (2006)。納米食品的活性與安全性研究。食品科學,27 : 936。
孫百秀 (2010)。分離大豆蛋白質水解物奈米顆粒之製備及特性之研究。私立東海大學食品科學研究所食品科技組碩士論文。
梁祥發 (2007)。奈米藥物傳輸技術在藥物發展上。化工技術,11 : 124-138。
莊仲揚 (2002)。幾丁聚醣於生醫產業上的應用。化工資訊,4 : 46-50。
張雅敏 (2002)。黑豆種子幾丁質酶之純化與性質研究。靜宜大學食品營養學研究所碩士論文。
張湘文 (2007)。高壓均質技術在食品工業上的應用。食品工業,39(8) : 16-24。
張湘文 (2008)。微細化技術在食品工業上之發展與應用。食品工業月刊,40(11):5-15。
張慧文 (2010)。以高壓均質製備幾丁聚醣奈米乳滴乳化液及其性質之研究。私立東海大學食品科學系研究所碩士論文。
陳美惠、莊淑惠及吳志律 (1999)。幾丁聚醣的物化特性。食品工業月刊,31 : 1-6。
陳健祺 (2000)。幾丁類物質在生醫材料上的應用。食品工業,32 : 9-17。
陳嘉芬 (2004)。細胞生物學。藝軒圖書出版社,p.88。
陳心怡 (2005)。雞蛋繫帶酵素水解物之抗氧化機制及在O/W 系統中抗氧化能力之表現。國立嘉義大學食品科學系研究所碩士論文。
陳慶隆 (2005)。幾丁聚醣對廢水中含氯有機物與染料吸附之研究。朝陽科技大學環境工程與管理研究所碩士論文。
黃健政、李欣格、莊雅雯、黃瓊慧及張譽穎 (2005)。油/水乳化系統中多酚化合物對兩價鐵離子的螯合作用與抗氧化能力的表現。國立嘉義大學食品科學系專題研究計畫。
趙承琛 編著 (1991)。界面基礎科學(原名:界面化學。復文書局出版。
趙承琛 (1995)。界面科學基礎。復文書局,第十五版。
趙武奇、殷湧光、梁歧及閆海洋 (2004)。殼聚糖─海藻酸鈉緩釋製備紅景天苷微膠囊。食品與發酵工業,30 : 66-69。
趙成萍及田野 (2006)。納米級維生素的研究。飼料工業,27 : 62。
劉瓊淑 (1994)。幾丁質,幾丁聚醣及其相關酵素之特性與應用。食品工業,26:26-36。
劉高強、魏美才及王曉玲 (2004)。松毛蟲資源開發及其資源化管理的初步設想。
西北林學院學報,19 : 119-120。
劉高強、劉衛星、魏美才及孫虹 (2005)。甲蟲甲殼素⁄殼聚糖的研究及其開發前景。西北林學院學報,20 : 143-146。
劉曉非、胡運華、耿崑崙、姚康德及張萬起 (2005)。殼聚糖及其衍生物應用於肥胖治療的研究進展。功能高分子學報,18 : 715-720。
劉彩雲、周圍、華陽、甘伯中及李維強 (2005)。納米技術在食品工業中的應用。食品工業科技,26 : 185。
潘育方及黃丹莹 (2005)。殼聚糖去除藥水煎液中重金屬的初探。化工時刊,19 :27-28。
蔡雅兆 (2004)。膠態幾丁聚醣及幾丁聚醣對小白鼠體重、營養素排出及膽固醇 和三酸甘油脂含量之比較。私立東海大學食品科學研究所碩士論文。
蔡義宏 (1979)。乳化原理。應用界面化學,2 : 13-19。
廖家鼎 (2010)。奈米食品的分析檢測技術。食品工業月刊,42(11) : 47-61。
賴淑琪 (1979)。水產廢棄物蝦、蟹外殼之高度利用。食品工業,11 : 23-28。
謝馥如 (2007)。奈米食品的安全性與生體利用率。食品工業月刊,39(8) : 35-45。
謝馥如 (2008)。奈米技術在食品工業之應用。食品工業月刊,40(11) : 60-68。
糜福龍 (2007)。幾丁聚醣化學改質再生醫材料的應用。化工技術,11 : 182-195。
歐靜枝 (1990)。乳化溶化技術實務。復漢出版社,台灣台南。

Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Inter. Sci., 14 : 3–15.
Aiba, S. (1992). Studies on chitosan: 4. Lysozymic hydrolysis of partially -acetylated chitosans. Int. J. Biol. Macromol., 14 : 225-228.
Aiba, S., Fujiwara, Y., Hideshima, T., Hwang, C., Kakizaki, M., Izume, M., Minoura, N., Rha, C. K., Shoij, T., Sinskey, A. J. and Tsutsumi A. (1986). Filmogenic properties of chitin/chitosan. In: Chitin in Nature and Technology. Muzzarelli, R. A. A., Jeuniaux, C., and Gooday, G.M.(Eds),Plenum Press, New York.
Allan, C. R. and Hadiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol., 3 : 285-287.
Alonso, I. G., Peniche-Covas, C. and Nieto, J. M. (1983). Determination of the degree of acetylation of chitin and chitosan by thermal analysis. J. Thermal Analysis.,28 : 189-193.
Arterburn, L. M., Hall, E. H. and Oken, H. (2006). Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr, 83 : 1467S–1476S.
Artursson, P., Lindmark, T., Davis, S. S. and Illum, L. (1994). Effect of chitosan on permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res.,11 : 1358–1361.
Arjan.S.H., Carolina S.F.P, Rosiane L.C.(2014). Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.Biotechnology, pages 221-229.
Aruoma.(1990).Ubiquinol-10 is an Effective Lipid-Soluble Antioxidant at Physiological Concentrations. Medical Sciences, 87: 4879-4883.
Austin, P. R., Brine, C. J., Castle, J. E. and Zikakis, J. P. (1981). Chitin: New facets of research. Science, 212: 749-753.
Beri, R. G., Walker, J., Reese, E. T. and Rollings, J. E. (1993). Characterization of chitosans via coupled size-exclusion chromatography and multiple-angle laser light-scattering technique. Carbohydrate, 238 : 11-26.
Blackwell, J. (1988). Physical methods for the determination of chitin structure and conformation. Meth. Enzymol., 16 : 435-442.
Bough, W. A. and Landes, D. R. (1977). Recovery and nutritional evalution of proteinaceous solids separated from whey by coagulation with chitosan. J. Dairy Sci. 59:1874.
Bough, W. A., Salter, W. L., Wu, A. C. M. and Perkins, B. E. (1978). Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. II. Coagulation of activated sludge suspensions, Biotechnol. Bioeng.,20 : 1931.
Brine, C. J. and Austin, P. R. (1981). Chitin variability with species and method of preparation. Comp. Biochem. Physiol., 69: 283-286.
Bustos, R., Díaz, G., Romo, C., Romo, L. and Yáñez, K. (2003). Oxidative stability of carotenoid pigments and polyunsaturated fatty acids in microparticulate diets containing krill oil for nutrition of marine fish larvae . J. Food Eng., 56 :289-293.
Butler, B. L., Vergano, P. J., Testin, R. F., Bunn, J. N. and Wiles, J. L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. J. Food Sci., 61 : 953,961.
Chau, C. F., Wu, S. H. and Yen, G. C. (2007). The development of regulations for food nanotechnology. Trends Food Sci. Tech., 18 : 269–280.
Chen, H., Weiss, J. and Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technol., 60 : 30.
Chen, L., Remondetto, G. E. and Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol.,17 : 272–283.
Chuah, A. M., Kuroiwa, T., Kobayashi, I. and Nakajima, M. (2009). Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloid. 23 : 600–610.
Chung, L. Y., Schmidt, R. J., Hamlyn, P. F., Sagar, B. F., Andrew, A. M. and Turner, T. D.(1994). Biocompatibility of potential wound management products: fungal mycelia as asource of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J. Biomed. Mater. Res., 28 : 463-469.
Connor WE.(2000). .Importance of n-3 fatty acids in health and disease. Am J Clin Nutr;71(suppl): 171S-5S
Das, K. P. and Kinsella, J. E. (1990). Stability of food emulsions: physicochemical role of protein and nonprotein emulsifiers. Adv. Food Nutr. Res., 34 : 82–201.
David, G. S., Fred, J. E., Liping, W., Jane, J-Y, Tong, W. and George, I. (2007). Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J. Agric. Food Chem., 55 : 4005-4013.
Davis, D. H. and Hayes, E. R. (1988). Determination of the degree of acetylation of chitin and chitosan. Methods Enzymol., 161 : 442-446.
Del Blanco, L. F., Rodriguez, M. S. Schulz, P. C. and Agullo, E. (1999). Influence of the deacetylation degree on chitosan emulsification properties. Colloid Polym. Sci., 277 : 1087-1092.
Desai, M. P., Labhasetwar, V., Amidon, G. L. and Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles effect of particle size. Pharm.Res.,13 :1838–1845.
De Caterina R.(2011). n-3 Fatty Acids in Cardiovascular Disease. d. N Engl J Me. 364:2439-50.
Djordjevic, D., Cercaci, L., Alamed, J., McClements, D. J. and Decker, E. A. (2007).Chemical and physical stability of citral and limonene in sodium dodecylSulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. J. Agric. Food Chem., 55 : 3585-3591.
Dodane, V., Khan, M. A. and Merwin, J. R. (1999). Effect of chitosan on epithelial permeability and structure. Int. J. Pharm., 182 :21–32.
Domard, A. (1987). Determination of N-acetyl content in chitosan samples by C. D. measurements. Int. J. Biol. Macromol., 9 : 333-336.
Dudley, D. T., Macfarland, D. E. and Spector, A. A. (1987). Depletion of arachidonic acid from GH3 cells. Biochem. J., 246 : 669-680.
Dutkiewicz, J., Tuora, M., Judkiewicz, L. and Ciszewski, R. (1992). New forms of chitosan polyelectrolyte complexes. In: advances in chitin and chitosan. brine, C. J., Sanford, P. A., Zikakis, J. P. (Eds), Elsevier Applied Science, London and New York. p.496.
El-Adawy, T. A. (2000). Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate. Food Chem., 70:83-91.
Elfiky, S.A., Elelaimy, I.A., Hassan, A.M., Ibrahim, H.M. and R.I. Elsayad, R.I. (2012). Protective effect of pumpkin seed oil against genotoxicity induced by
zathioprine. The Journal of Basic & Applied Zoology, 65 : 289-298
Filar, L. F. and Wirick, M. G. (1978). Bulk and solution properties of chitosan. In : Proceedings of the 1st Int. Conf. on chitin/chitosan. Muzzarelli. R. A. A. and Pariser,E. R. (Eds.).
Fasswtt RG, Gobe GC, Peake JM, et al.(2010).Omega-3 Polyunsaturated Fatty Acids in the Treatment of Kidney Disease. Am J Kidney Dis; 56: 728-742.
Floury, J., Desrumaux, A. and Lardières, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol., 1 : 127-134.
Friberg, S. E. and Larsson, K. (1997). Food emulsions. New York.
Goyens, P. L. L., Spilker, M. E., Zock, P. L., Katan , M. B. and Mensink R. P. (2006).Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr.,84 : 44 –53.
Guan, R. F., Qian, B., Ye, X. Q. and Hao, Y. B. (2006). Recent study of nanotechnology in food science. Food Sci., 27 : 270.
Gudipati, V., Sandra, S., McClements, D. J. and Decker, E. A. (2010). Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multulayered membranes. J. Agric. Food Chem., 58 : 8093-8099.
Hackman, R. H. and Goldberg, M. (1965). Studies on chitin.Ⅵ. The nature of α and β-chitins. Aust. J. Biol. Sci., 18 : 935.
Hatanaka, J., Kimura, Y., Lai, F. Z., Onoue, S. and Yamada, S. (2007).Physicochemical and pharmacokinetic characterization of water-soluble Coenzyme Q10 formulations. Int. J. Phar., 10 : 1016.
He, P., Davis, S. S. and Illum, L. (1998). In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm., 166 : 75-88.HANA, A., AMAL, A., ABD, E. and HEKMA, A, ABD, EL, L. (1997). Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacological Research, 35 : 5
Higuera-Ciapara, I., Argüelles-Monal, W., Felix-Valenzuela, L. and Goycoolea, F. M. (2004). Microencapsulation of astaxanthin in a chitosan matrix. Carbohyd.Polym., 56:41-45.
Hirano, S. (1989). Production and application of chitin and chitosan in Japan. In: Chitin and Chitosan. Skjak-Braek, G., Anthonsen, T., Sandford, P. Eds., Elsevier Applied Science, London, UK. p.37-43.
Hirano, S., Hakura, C., Seino, H., Akiyama, Y., Nonaka, I., Kanbara, N. and Kawakami, T. (1990). Chitosan as an ingredient of domestic animal feed. J. agric. Food Chem., 38 :1214.
Holan, Z. and Voyruba, J. (1980). New method of chitin determination based on deacetylation and gas-liquid chromatographic assay of liberated acetic acid. J. Chromatography., 190 : 67–76.
Huang, M., Khor, E. and Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effect of molecular weight and degree of deacetylation. Pharm. Res., 21 : 344-353.
International IDF Standards (1991) International Dairy Federation, IDF- Square Vergote 41, Brussels, Belgium, sec. 74A:1991.
Jafari, S. M., Assadpoor, E., Bhandari, B. and He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Res. Int., 41(2) : 172-183.
Jafari, S. M., He, Y. and Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. J. Food Eng., 82 : 478-488.
Junginger, H. E. (1998). Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J. Control Rel., 51:35–46.
John G. Scamdalios.(1992).Molecular Biology of Free Radical Scavenging Systems, United States of America, Cold Spring Harbor Laboratory.
Kaasgaard, T. and Keller, D. (2010). Chitosan coating improves retention and redispersibility of freeze-dried flavor oil emulsions. J. Agric. Food Chem., 58 :2446–2454.
Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M. and Kobayashi, E. (1995).
Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci. Biotechnol. Biochem., 59 : 786-790.
Kris-Etherton PM, Harris WS, Appel LJ.( 2003). Omega-3 Fatty Acids and Cardiovascular Disease: New Recommendations From the American Heart Association. Arterioscler Thromb Vasc Biol; 23: 151-152.
Kardinaal, A. F. M., Aro, A., Kark, J. D., Riemersma, R. A., Veer, P.,Gomez-Aracena, J., Kohlmeier, L., Ringstad, J., Martin, B. C., Mazaev, V. P., Delgado-Rodriguze, M., Thamm, M., Huttunen, J. K., Martin-Moreno, J. M. and Kok, F. J. (1995). Association between β-Carotene and acute myocardial infarction depends on polyunsaturated fatty acid Status. Arterioscl.Throm. Vas. Biol., 15 : 726-732.
Kienzle-Sterzer, C. and Rha, C. K. (1984). Solution properties of chitosan:Chitin conformation. In:Chitin, Chitosan and Related Enzymes. Zikakis, J. P. (Eds.),Axademic Press, Landon.
Kittur, F. S., Kumar, K. R. and Tharanathan, R. N. (1998). Functional packaging properties of chitosan films. Z Lesbensm. Unters Forsch. A., 206 : 44.
Kleing, A. R., and Middelberg, A. P. J. (1996). The correlation of cell disruption with homogenizer valve pressure gradient determined by computational fluid dynamics. Chem. Eng. Sci., 51 : 5103-5110.
Klinkesorn, U., Chinachoti, P., Decker, A. E., McClements, J. D. and Sophanodora, P. (2005). Encapsulation of emulsified tuna oil in two-layered interfacial membranes a prepared using electrostatic layer-by-layer deposition. Food Hydrocolloid., 19:1044-1053.
Klinkesorn, U. and McClements, J. D. (2009). Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem.,114 : 1308–1315.
Klinkesorn, U. and McClements, J. D. (2010). Impact of lipase, bile salts, and polysaccharides on properties and digestibility of tuna oil multilayer emulsions stabilized by lecithin–chitosan. Food Biophys., 5 :73–81.
Klinkesorn, U., Sophanodora, P., Chinachoti, P., McClements, J. D. and Decker, A. E. (2005). Increasing the oxidative stability of liquid and dried tuna oil-water- emulsions with layer-by-layer deposition technology. J. agric. Food chem., 53 :4561-4566.
Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, A. E. and McClements, J. D. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition.Food Res. Int., 39 : 449–457.
Knorr, D. (1982). Functional properties of chitin and chitosan. J. Food Sci., 47 :593-595.
Knorr, D. (1984). Use of chitinous polymers in food-a challenge for food research and development. Food Technol., 38 : 85–97.
Knorr, D. (1986). Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: A review. Proc. Biochem., 6 : 90.
Knorr, D., Wampler, J. P. and Teutonico, R. A. (1985). Formation of prazine by chitin pyrolysis. J. Food Technol., 50 : 1762-1763.
Kotze, A. F., Lueβen, H. L., de Leeuw, B. J., de Boer, A. G., Verhoef, J. C. and Junginger, H. E. (1998). Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells(Caco-2). J. Control Rel., 51:35–46.
Kurita, K., Shimada, K., Nishiyama, Y., Shimojoh, M. and Nishimura, S. I. (1998).
Nonnatural branched polysaccharides: synthesis and properties of chitin and chitosan having alpha-mannoside branches. Macromolecules, 31 : 4764-4769.
Labuza, T. P. and Breene, W. M. (1989). Applications of 'active packaging' for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J. Food Proc. Preserv., 13 : 1.
Lanciotti, R., Patrignani, F., Iucci, L., Guerzoni, M. E., Suzzi, G., Belletti, N. and Gardini, F. (2007). Effects of milk high pressure homogenization on biogenic amine accumulation during ripening of ovine and bovine Italian cheeses. Food Chem., 104 : 693-701.
Launay, B., Doublier, L. L. and Cuverilier, G. (1986). Flow properties of aqueous solution and dispersions of polysaccharides. In: Function properties of food macromolecules.
Lester , P.,Jurgen , F. (1992).Vitmin E in health and disease.
Li, H-J., Xin, Z-H. and Hu, Q-H. (2006). Advance in food nanotechnology and nanofood. Food Sci., 27 : 271.
Lin, Y., Tang, J., Chen, X. and Xin, H. (2005). A templating route to nanoporous chitosan materials. Carbohydr. Res., 340 : 2816-2820.
Liu, Y., Tang, J., Chen, X. and Xin. J. H. (2005). Decoration of carbon nanotubes with chitosan. Carbon, 43 : 3178-3180.
Lueβen, H. L., Lehr, C. M., Rentel, C. O., Noach, A. B. J., de Boer, A. G., Verhoef, J.C. and Junginger, H. E. (1994). Bioadhesive polymers for the peroral delivery of peptide drugs. J. Control Rel., 29 : 329–338.
Lu, L., Ma, M., Zhang, Y., Tang, M. and Gu, N. (2004). Development of study on biosafety of nanomaterials. J. South Univ., 34 : 711.
Maclean, C. H., Newberry, S. J., Mojica, W. A., Issa, A., Khanna, P., Lim, Y. W., Morton, S. C., Suttorp, M., Tu, W., Hilton, L. G., Garland, R. H., Traina, S. B.and Shekelle, P. G. (2005). Effects of omega-3 fatty acids on cancer, Evid. Rep. Technol. Assess., 113 : 1–4.
Macrae, R., Robinson, R. K. and Sadler, M. J. (1993). Encyclopaedia of food science food technology and nutrition. Academic press, New York.
Magdassi, S., Bach, U. and Mumcuoglu, K. Y. (1997). Formation of positively charged microcapsules based on chitosan-lecithin interactions. J. Microencapsul.,14 : 189-195.
Maghami, G. and Roberts, A. F. (1988). Evaluation of the viscometric constants for chitosan. Die Makromolekul. Chem., 189 : 195–200.
Makni, M., Fetoui, H., Gargouri, N. K., Garoui, El,M., Jaber, H., Makni, J.,Boudawara, T. and Zeghal, N. (2008) Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ⍵-3 and ⍵-6 fatty acids in hypercholesterolemic rats. Food and Chemical Toxicology, 46 : 3714-3720.
McClements, J. D. (2010). Design of nano-laminated coatings to control bioavailability of lipophilic food components. J. Food Sci., 75 : 1.
McManus A, Merga M, Newton M.(2011). Omega-3 fatty acids. What consumers need to know. Appetite; 57: 80-83.
Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I. and Radomski, M.W. (2007). Nanoparticles: pharmacological and toxicological significance. Br. J. Pharmacol., 150 : 552–558.
Methacanon, P., Prasitsilp, M., Pothsree, T. and Pattaraarchachai, J. (2003).
Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr. Polym., 52 : 119-123.
Michael, M., Vieno, P., Anna, M, L., Tanja, K. and Gerhard, S. (2004). Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 1: non-volatile compounds). Food Chemistry, 84 : 359-365
Mima, S., Miya, M., Iwamoto, R. and Yoshikawa, S. (1983). Highly deacetylatedchitosan and its properties. J. Appl. Polym. Sci., 28 : 1909–1917.
Minke, R. and Blackwell, J. (1978). The structure of α-chitin. J. Mol. Biol., 120 : 67-81.
Mirjana, A., John, V. C., Agniezska, T. and Roland, V. (2010). Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol, 112:208-217
Mitchell, J. R., and Ledward, D. A., Elsevier applied Sci., Publishers. p.12-19.
Mitra, S., Gaur, U., Ghosh, P. C. and Maitra, A. N. (2001). Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release., 74 : 317-323.
Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R. and Spector, A. A. (1991).
Astrocytes, not neurons, produce docosahexaenoic acid (22:6 tv3) and arachidonic acid (20:4 n-6). J. Neurochem., 56 : 518-524.
Muzzarelli, R. A. A. (1977). In: “Chitin”. Muzzarelli, R. A. A. Eds, Pergamon Press.Oxford., New York, Toronto, Sydney, Paris, Frankfurt. Muzzarelli, R. A. A. (1977). Chitin. Oxford: Pergamon, 220–228.
Muzzarelli, R. A. A. (1997). Chitosan as dietary food additives. In: Applications of Chitin and Chitosan. Goosen, M. F. A. (Ed), Technomic. Lancaster, PA, UK. p.115.
Muzzarelli, R. A. A. and Roberto, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym., 5 : 461-472.
McCord JM, Fridovich I.(1969).Superoxide dismutase, An enzymic function for erythrocuprein (hemo cuprein). J B C,244: 6049-6055.
Nanjo, F., Katsumi, R. and Sakai, K. (1991). Enzymatic method for determination of the degree of deacetylation of chitosan. Anal. Biochem., 193:164–167.
Naoji, K., Nobuhide, T., Takayuki, S. and Kaori, T. (2000). A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res., 324: 268-274 .
Napper, D. H. (1983). Polymeric stabilization of colloidal dispersions. New York : Academic Press.
Niola, F., Basora, N., Chornet, E. and Vidal, P. F. (1993). A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC. Carbohydr. Res., 238:1–9.
Nishimura, S. I., Kai, H., Shinada, K., Yoshida, T., Tokura, S., Kurita, K., Nakashima, H., Yamamoto, N. and Uryu, T. (1998). Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates. Carbohydr. Res., 306 : 427-733.
Noishiki, N., Kuga, S., Wada, M., Hori, K. and Nishiyama, Y. (2004). Guest selectivity in complexation of β-chitin. Macromolecules, 37 : 6839–42.
Ogawa, S., Decker, E. A. and McClements, J. D. (2003). Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J. Agric. Food Chem., 51 : 2806-2812.
Ogawa, S., Decker, E. A. and McClements, J. D. (2004). Production and characterization of O/W emulsions containing droplets stabilized by
lecithin-chitosan-pectin mutilayered membranes. J. Agric. Food Chem., 52 :3595-3600.
Panya, A., Laguerre, M., Lecomte, J., Villeneuve, P., Weiss, J., McClements, D. J. and Decker, E. A. (2010). Effects of chitosan and rosmarinate esters on the physical and oxidative stability of liposomes. J. Agric. Food Chem., 58 : 56795684.
Poudyal H, Panchal SK, Diwan V, et al.(2011).Omega-3 fatty acids and metabolic syndrome:Effects and emerging mechanisms of action. Prog Lipid Res;50:372-387.
Paquin, P. (1999). Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int. Dairy J., 9 : 329-335.
Percot, A., Viton, C. and Domard, A. (2003). Optimization of chitin extraction from shrimp shells. Biomacromol, 4 : 12-18.
Phipps, L. W. (1971). Mechanism of oil droplet fragmentation in high homogenizers,Nature, 233 : 617-619.
Prashanth, H. K. V., Kitture, F. S. and Tharanathan, R. N. (2002). Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym., 50 : 27-33.
Qin, C. Q., Du, Y. M., Xiao, L., Li, Z. and Gao, X. H. (2001). Enzymatic preparation of water-soluble chitosan and their antitumor activity. Int. J. Biol. Macromol., 31:111-117.
Qin, C. Q., Zhou, B., Zeng, L. T. Z., Zhang, H., Liu, Y., Du, Y. M. and Xiao, L. (2003). The physicochemical properties and antitumor activity of
cellulase-treated chitosan. Food Chem., 84 : 107-115.
Ramsden, C. E., Ringel, A., Feldstein, A. E., Taha, A. Y., MacIntosh, B. A., Hibbeln, J. R., Majchrzak-Hong, S. F., Faurot, K. R., Rapoport, S. I., Cheon, Y., Chung,Y-M., Berk, M. and Mann, J. D. (2012). Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 87 (4-5) : 135-141.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Prog. Polym.Sci., 31 : 603-632.
Roberts, G. A. F. and Domszy, J. A. (1982). Determination of viscometric constantsfor chitosan. Int. J. Biol. Marcomol., 4 : 373–377.
Roberts, Lees. (1990). Omeag-3 fatty acids in health and disease.Chapter l 16 :309-323.
Rodriguez, M. S., Albertengo, L. A. and Agullo, E. (2002). Emulsification capacity of chitosan. Carbohydr. Polym., 4 8 : 271.
Rohner, F., Ernst, F. O., Arnold, M., Hilbe, M., Biebinger, R., Ehrensperger, F., Pratsinis, K. E., Langhans, W., Hurrell, R. F. and Zimmermann, M. B. (2007). Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. J. Nutr., 137 : 614-619.
Roller, S. and Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol., 47 : 67-77.
Ruiz-Herrera, J. (1978). The distribution and quantitative importance of chitin in fungi. In: Chitin and chitosan Proceedings of the First Intermational Conference on Chitin and Chitosan Muzzarelli, R. A. A., and Pariser, E. R. Eds. MIT Sea Grant Program, Cambridge, Mass.
Sabnis, S. and Block, L. H. (2000). Chitosan as an enabling excipient for drug delivery systems I. Molecular modifications. J. Membrane Sci.,142 : 13-26.
Sakdapipanich, J. T. and Rojruthai, P. (2012). Molecular structure of natural rubber and its characteristics based on recent evidence, biotechnology - molecular studies and novel applications for improved quality of human life. Prof. Reda Sammour (Ed.), p.213-238.
Schipper, N. G. M., Olsson, S., Hoogstraate, J. A., de Boer, A. G., Varum, K. M. and Artursson, P. (1997). Chitosans as absorption enhancers for poorly absorbable drugs. 2: Mechanism of absorption enhancement. Pharm. Res.,14 : 923–929.
Schipper, N. G. M., Varum, K. M. and Artursson, P. (1996). Chitosan as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human epithelial (Caco-2) cells. Pharm. Re., 13:1686–92.
Schipper, N. G., Varum, K. M., Stenberg, P., Ocklind, G., Lennernäs, H. and Artursson, P. (1999). Chitosans as absorption enhancers of poorly absorbable drugs. 3:Influence of mucus on absorption enhancement. Eur. J. Pharm. Sci., 8 :335–43.
Schlemmer, C. K., Coetzer, H., Claassen, N. and Kruger, M. C. (1999). Estrogen and essential fatty acid supplementation corrects bone loss due to ovariectomy in the female Sprague Dawley rat. Prostaglandins Leukot Essent Fatty Acids, 61 : 381–\390.
Schulz, M. B. and Daniels, R. (2000). Hydroxypropylmethylcellulose (HPMC) as emulsifier for submicron emulsions influence of molecular weight and substitution type on the droplet size after high-pressure homogenization. Eur. J. Pharm. Biopharm., 49 : 231-236.
Shahabeddin, L., Berthod, F., Damour, O. and Collombel, C. (1990). Characterization of skin reconstructed on a chitosan-cross-linked collagen-glycosaminoglycan matrix. Skin Pharmacol., 3 : 107-114.
Shahidi, F., Vidana-Arachchi, J. K. and Jeon, Y. J. (1999). Food applications of chitin and chitosan. Trends Food Sci. Technol., 10 : 37-51
Shantha, N. C. and Decker, E. A. (1994). Rapid, sensitive, iron-based specyrophoometric methods for determination of peroxide values of food lipids. Shantha and Decker:Journal of AOAC international, 77 : 2.
Shaw, L. A., McClements, D. J. and Decker, E. A. (2007). Spray-dried multilayered emulsions as a delivery method for ω-3 fatty acids into food systems. J. Agric. Food Chem., 55 : 3112–3119.
Shen, Z., Augustin, M. A., Sanguansrl, L. and Cheng, L. J. (2010). Oxidative stability of microencapsulated fish oil powders stabilized by blends of chitosan, modified starch, and glucose. J. Agric. Food Chem., 58 : 4487–4493.
Shimahara, K., Ohkouchi, K. and Ikeda, M. (1982). A new isolation method of crustacean chitin using a proteolytic bacterium Pseudomonas maltophilia. In: Chitin and Chitosan, Proceedings of second international Conference on Chitin and Chitosan. Ed. by Hirano, S. and Tokura, S. Eds. The Japanese Society of Chitin and Chitosan, p.10-14.
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother, 56 : 365–379.
Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am Coll. Nutr., 21(6) : 495-505.
Simopoulos, A. P. and Cleland, L. G. (2003). Omega-6/omega-3 essential fatty acid ratio: the scientific evidence. World Rev. Nutr. Diet., Basel, Karger, 92 : 1-22.Simopoulos, A. P., Leaf, A. and Salem, Jr. N. (1999). Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 Fatty Acids. Ann. Nutr. Metab., 43 : 127-130.
Sorensen, Sørensen, Ann-Dorit, M., Anne-Mette, H., Becker, E. M., Skibsted, Leif, H., Bergenståhl, B., Nilsson, L. and Jacobsen, C. (2008). Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-Water emulsions. J. Agric. Food Chem., 56 : 1740–1750.
Spector, A. A. (1999). Essentiality of fatty acids. Lipids, 34 : S1-S3.
Spiteller, G. (1998). Linoleic acid peroxidation-the dominant lipid peroxidation process in low density lipoprotein and its relationship to chronic diseases. Chem. Phys.Lipids,95 : 105-162.
Stanley, W. L., Watters, G. G., Chan, B. and Mercer, J. M. (1975). Lactase and other enzymes bound to chitin with glutaraldehyde. Biotechnol. Bioeng., 17: 315-326.Suzuki, K., Tokoro, A., Okawa, Y., Suziki, S. and Suziki, M. (1986) Effect of N-acetyl-chitooligosaccharides on activation of phagocytes. Microbiol. Immunol.,30 : 777.
Sweet, L. and Strohm, B. (2006). Nanotechnology-life-cycle risk management. Hum.
Ecol. Risk Assess., 12 : 528.
Synowiecki, J. and Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem., 60 : 605-610.
Tan, S. C., Khor, E., Tan, T. K. and Wong, S. M. (1998). The degree of deacetylation of chitosan:advocating the first derivative UV-spectrophotometry method of determination. Talanta., 45 : 713–719.
Tesch, S., Gerhends, Ch. and Schubert, H. (2002). Stabilization of emulsion by OSA starches. J. Food Eng., 54 : 167-174.
Thomas, K., Aguar, P., Kawasaki, H., Morris, J., Nakanishi, J. and Savage, N. (2005).Research strategies for safety evaluation of nanomaterials, part VIII: International efforts to develop risk-based safety evaluations for nanomaterials. Toxicol. Sci.,92 : 23.
Toei, K. and Kohara, T. (1976). A conductometric method for colloid titrations. Anal.Chim. Acta, 83 : 59–65.
Tsai, G. J. and Su, W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot., 62 : 239-243.
Tsuzuki, T., Tokuyama, Y., Igarashi, M. and Miyazawa, T. (2004). Tumor growth suppression by a-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis, 25 (8) : 1417--1425
Uragami, T., Matsuda, T., Okuno, H. and Miyata, T. (1994). Structure of chemically ModiRed chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J. Membrane Sci., 88 : 243.
Vahouny, G. V., Satchithanandam, S., Cassidy, M. M., Lightfoot, F. B. and Furda, I. (1983).Comparative effect of chitosan and cholestyramine on lymphatic absorption of lipids in rats. Am. J. Clin. Nutr., 38: 278-284.
Van Nieuwenhuyzen, W. and Szuhaj, B. F. (1998). Effects of lecithin and proteins on the stability of emulsions. Fett-Lipid, 100 : 282-291.
Wei, Z., Wang, C., Zou, S., Liu, H. and Tong, Z. (2012). Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer, 53 : 1229-1235.
Welti-Chanes, J., Ochoa-Velasco, C. E. and Guerrero-Beltrán, J.A . (2009). High-pressure homogenization of orange juice to inactivate pectinmethylesterase.
Innov. Food Sci. Emerg. Technol., 10 (4) : 457–462.Wu, A. C. M. and Bough, W. A. (1976). Determination of molecular weight distribution of chitosan by HPLC. J. Chromatogr., 128 : 87–92.
Yang, X., Tian, H., Ho, Ch. and Huang, Q. (2012). Stability of citral in emulsions coated with cationic biopolymer layers. J. Agric.Food Chem., 60 : 402−409.
Yorek, M. A., Bohnker, R. R., Dudley, D. T. and Spector, A. A. (1984). Comparative utilization of n-3 polyunsaturated fatty acids by cultured human retinoblastoma cells. Biochim. Biophys. Acta, 795 : 277-285.
Zhang, H., Hamilton, J. H., Salem, N. Jr. and Kim, H. Y. (1998). n-3 Fatty acid deficiency in the rat pineal gland: effects on phospholipid molecular species composition and endogeneous levels of melatonin and lipoxygenase products. J. Lipid Res., 39 :1397-1403.
Zhu, J., Wang, Y-B. and Zhang, S-P. (2006). Preparation and development of nanofood. Food Sci. Technol., 11 : 25.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔