跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建智
研究生(外文):Chien-Chih Chen
論文名稱:基於OpenStack實作一個擁有虛擬機動態資源調配方法之雲端節能系統
論文名稱(外文):Implementation of a Cloud Energy Saving System with Virtual Machine Dynamic Resource Allocation Method base on OpenStack
指導教授:楊朝棟楊朝棟引用關係
指導教授(外文):Chao-Tung Yang
口試委員:林迺衛朱正忠賴冠州時文中
口試委員(外文):Nai-Wei LinWilliam Cheng-Chung ChuKuan-Chou LaiWen-Chung Shih
口試日期:2015-06-30
學位類別:碩士
校院名稱:東海大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:94
中文關鍵詞:OpenStack動態資源調配能源節省Live Migration狀態監控
外文關鍵詞:OpenStackDynamic Resource AllocationEnergy SavingLive MigrationStatus Monitoring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
美國國家標準與技術研究院(NIST)將雲端定義為:「雲端運算是一種模式,能方便且隨需求應變地透過連網存取廣大的共享運算資源(如網路、伺服器、儲存、應用程式、服務等),並可透過最少的管理工作及服務供應者互動,快速提供各項服務。」根據Gartner諮詢公司的分析,雲端運算是2015年對企業組織而言最重要的策略科技趨勢的前十大之一。所謂的策略科技(strategic technology),根據Gartner定義,指的是可能在未來三年對企業組織帶來重大影響的技術。各個企業、組織與學校也都跟隨著雲端的潮流,建立大規模的雲端運算叢集取代一人一電腦的情形。雖然虛擬化可以減少添購硬體設備的,但是也衍生出了兩個問題-能源的消耗與閒置資源的浪費。所以我們提出了兩個方法:1.動態調配資源方法2.節電方法。如何有效節省並利用虛擬機於低負載時的閒置資源,與如何節省伺服器的能源消耗,是我們在本篇論文裡必須面對與解決的兩大問題。為了達到我們的目標,我們實現一個以雲端軟體OpenStack為基礎設施的平台並使用動態調配資源方法與節電方法來達到節省能源的目的。我們也將會利用PDU紀錄的耗電量來證明我們提出的方法是有用而且真的可以節省能源。
The US National Institute of Standards and Technology (NIST) defines cloud computing as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” According to analysis by Gartner, Inc., cloud computing is one of the top 10 strategic technology for most organizations in 2015. Gartner defines a strategic technology as one with the potential for significant impact on the organization in the next three years. Companies, organizations and academic institutions are following the cloud computing trend; the establishment of large-scale cloud computing clusters avoids the need to provide one person with one computer. Even though virtualization can reduce the cost of hardware equipment, but it still faces with two problems: energy consumption and the waste of the idle resources. To solve these two problems, we propose two algorithms, i.e., dynamic resource allocation and energy saving. In order to implement these two algorithms with live migration of virtual machines, we first build an infrastructure platform based on cloud software – OpenStack. Next, dynamic resource allocation and energy saving algorithms are designed and implemented. Finally, we use the Power Distribution Unit (PDU) to monitor system status and record power consumption; the real time status monitoring data verify that the proposed algorithms are efficient in energy saving and idle resource planning.
摘要 I
Abstract II
Table of Contents III
List of Figures VI
List of Tables IX
1 Introduction
1.1 Motivation
1.2 Thesis Goal and Contributions
1.3 Thesis Organization
2 Background Review and Related Work
2.1 Background Review
2.1.1 Cloud Computing
2.1.2 Virtualization
2.1.3 Hypervisor
2.1.4 OpenStack
2.1.5 OpenStack Conceptual Architecture
2.1.6 Live Migration
2.1.7 NFS (Network File System)
2.1.8 PDU (Power Distribution Units)
2.2 Related Work
3 System Design and Implementation
3.1 System Architecture
3.2 Design Flow
3.2.1 Design Flow of Dynamic Resource Allocation method
3.2.2 Design Flow of Energy Saving method
3.3 System Implementation
3.3.1 Status Monitoring
3.3.2 Energy Consumption Recording
3.3.3 Dynamic Resource Allocation method
3.3.4 Energy Saving method
3.4 User Interface
4 Experimental Results
4.1 Experimental Environment
4.2 Experimental Results and Discussion
4.2.1 Experiment of VM Performance
4.2.2 Experiment of Dynamic Resource Allocation method
4.2.3 Experiment of Energy Saving method
4.2.4 Experiment of Dynamic Resource Allocation and Energy
Saving method
4.2.5 Discussion
5 Conclusions and Future Work
5.1 Concluding Remarks
5.2 Future work
References
Appendix
A OpenStack Installation
B NFS Installation
C Programming Codes
D Monitor Codes
[1] Gartner identifies the top 10 strategic technology trends for 2015, 2014. http:
//www.gartner.com/newsroom/id/2867917.
[2] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin Bichler.
More than bin packing: Dynamic resource allocation strategies in cloud data
centers. Information Systems, pages 83 – 95, 2015.
[3] Lucas W. Krakow, Louis Rabiet, Yun Zou, Guillaume Iooss, and Sanjay Ra-
jopadhye Edwin K.P. Chong. Optimizing dynamic resource allocation. Pro-
cedia Computer Science, pages 1277 – 1288, 2014.
[4] M.B. Nagpure, P. Dahiwale, and P Marbate. An efficient dynamic resource al-
location strategy for vm environment in cloud. Pervasive Computing (ICPC),
2015 International Conference on, pages 1 – 5, 2015.
[5] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware re-
source allocation heuristics for efficient management of data centers for cloud
computing. Future Generation Computer Systems, 28:755 – 768, 2012.
[6] Chao-Tung Yang, Kuan-Lung Huang, Jung-Chun Liu, Yi-Wei Su, and Chu
W.C.-C. Implementation of a power saving method for virtual machine man-
agement in cloud. Cloud Computing and Big Data (CloudCom-Asia), 2013
International Conference on, pages 283 – 290, 2013.
[7] Ningling Wang, Peng Fu, Yongping Yang, Longfei Zhu, and Dianfa Wu.
Spatial-temporal energy-saving effect for the diagnosis of energy-consumption
benchmark state of thermal power units. Energy Procedia, pages 1848 – 1851,
2014.
[8] G. Thomas, K. Chandrasekar, B. Akesson, and B. Juurlink. A predictor-
based power-saving policy for dram memories. Digital System Design (DSD),
2012 15th Euromicro Conference on, pages 882 – 889, 2012.
[9] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering
Cloud Computing: Chapter 3 – Virtualization. MORGAN KAUFMANN,
2013.
[10] Xiaofei Liao, Hai Jin, Shizhan Yu, and Yu Zhang. A novel memory allocation
scheme for memory energy reduction in virtualization environment. Journal
of Computer and System Sciences, 81:3 – 15, 2015.
[11] Yaozu Dong, Xiantao Zhang, Jinquan Dai, and Haibing Guan. Hyvi: A hybrid
virtualization solution balancing performance and manageability. Parallel and
Distributed Systems, 25:2332 – 2341, 2014.
[12] S.A. Babu, M.J. Hareesh, J.P. Martin, S. Cherian, and Y. Sastri. System per-
formance evaluation of para virtualization, container virtualization, and full
virtualization using xen, openvz, and xenserver. In Advances in Computing
and Communications (ICACC), 2014 Fourth International Conference on,
pages 247–250, Aug 2014.
[13] Inhyuk Kim, Taehyoung Kim, and Young Ik Eom. Nhvm: Design and imple-
mentation of linux server virtual machine using hybrid virtualization technol-
ogy. In Computational Science and Its Applications (ICCSA), 2010 Interna-
tional Conference on, pages 171–175, March 2010.
[14] Hypervisor, 2015. http://en.wikipedia.org/wiki/Hypervisor.
[15] Openstack open source cloud computing software, 2015. http://www.
openstack.org/.
[16] What is openstack?, 2015. http://opensource.com/resources/
what-is-openstack.
[17] Openstack, 2015. http://en.wikipedia.org/wiki/OpenStack.
[18] Zhaojun Li, Haijiang Li, Xicheng Wang, and Keqiu Li. A generic cloud
platform for engineering optimization based on openstack. Advances in En-
gineering Software, 75:42 – 57, 2014.
[19] Openstack architecture, 2014. http://docs.openstack.org/
icehouse/install-guide/install/apt/content/ch_overview.html#
architecture_overview.
[20] Hai Jin, Li Deng, Song Wua, Xuanhua Shia, Hanhua Chena, and Xiaodong
Panc. Mecom: Live migration of virtual machines by adaptively compressing
memory pages. Future Generation Computer Systems, 38:23 – 25, 2014.
[21] Mattias Forsman, Andreas Glad, Lars Lundberg, and Dragos Ilie. Algorithms
for automated live migration of virtual machines. Journal of Systems and
Software, 101:110 – 126, 2015.
[22] Muhammad Atif and Peter Strazdins. Adaptive parallel application resource
remapping through the live migration of virtual machines. Future Generation
Computer Systems, 37:148 – 161, 2014.
[23] Hai Jin, Wei Gao, Song Wu, Xuanhua Shi, Xiaoxin Wu, and Fan Zhou. Op-
timizing the live migration of virtual machine by cpu scheduling. Journal of
Network and Computer Applications, 34:1088 – 1096, 2011.
[24] Kejiang Ye, Xiaohong Jiang, Ran Ma, and Fengxi Yan. Vc-migration: Live
migration of virtual clusters in the cloud. In Grid Computing (GRID), 2012
ACM/IEEE 13th International Conference on, pages 209–218, Sept 2012.
[25] Shaoming Guo, Wang Yang, and Guojun Wang. Nfs protocol performance
analysis and improvement for mobile transparent computing. High Perfor-
mance Computing and Communications 2013 IEEE International Conference
on, pages 1878 – 1883, 2013.
[26] Network file system, 2015. http://en.wikipedia.org/wiki/Network_
File_System.
[27] Alex Osadzinski. The Network File System (NFS). Computer Standards and
Interfaces, 1988–1989.
[28] Power distribution unit, 2015. http://en.wikipedia.org/wiki/Power_
distribution_unit.
[29] What is power distribution unit?, 2013. http://searchdatacenter.
techtarget.com/definition/power-distribution-unit-PDU.
[30] Chao-Tung Yang, Chih-Liang Chuang, Jung-Chung Liu, Chien-Chih Chen,
and W.C. Chu. Implementation of cloud infrastructure monitor platform with
power saving method. In Advanced Information Networking and Applications
Workshops (WAINA), 2015 IEEE 29th International Conference on, pages
223–228, March 2015.
[31] Cloud computing, 2015. http://en.wikipedia.org/wiki/Cloud_
computing.
[32] What is cloud computing?, 2015. http://www.ibm.com/cloud-computing/
us/en/what-is-cloud-computing.html.
[33] Cloud open lab, 2012. http://www.cloudopenlab.org.tw/ccipo_
industryDefinition.do.
[34] Rajkumar Buyya, Christian Vecchiola, and S. Thamarai Selvi. Mastering
Cloud Computing: Chapter 4 – Cloud Computing Architecture. MORGAN
KAUFMANN, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top