跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江哲瑋
研究生(外文):Chiang,Che Wei
論文名稱:鈷和氧化銅多層摻雜以及單層氧化鐵摻雜奈米碳紙其微波吸收研究
論文名稱(外文):The study of microwave absorption properties of Co/CuO doped multilayer buckypaper and Fe3O4 doped buckypaper
指導教授:劉日新劉日新引用關係
指導教授(外文):Jih-Hsin Liu
口試委員:苗新元王可文李立鼎
口試委員(外文):Hsin-Yuan MiaoWang Ke WenLi-Ting Li
口試日期:2015-06-30
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:96
中文關鍵詞:奈米碳管奈米碳管紙同軸量測微波吸收
外文關鍵詞:carbon nanotubes, , ,carbon nanotube papercoaxial measurementmicrowave absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
自1991年奈米碳管被發現後,其力學、光學、電學及磁特性優異的特性使得近年來成為很熱門的研究方向,由於奈米碳管體積極小,因此在現實生活中很少被實際應用。
為了使我們能夠在巨觀下研究奈米碳管,本實驗利用真空過濾法將奈米碳管製作成水溶液,之後過濾成一片奈米碳管紙,稱巴克紙(buckypaper,BP)。
本實驗使用鈷、氧化銅、氧化鐵等奈米粉體以摻雜比例10%、30%、50%改質巴克紙,並使用鈷及氧化銅摻雜製作分層巴克紙,最後利用同軸量測法測量不同摻雜比例及不同分層之巴克紙之微波特性,同時測量磁滯曲線觀察巴克紙在經過改質後磁性的變化。
實驗結果可以看出巴克紙在經過摻雜之後會出現傳輸損耗降低及反射損耗下降的趨勢,但是在摻雜氧化鐵時則是在摻雜超過30%後,傳輸損耗及反射損耗出現上升的趨勢,傳輸損耗最大達-11.21dB,同時吸收損耗出現寬頻吸收的特性;在分層巴克紙量測結果可看出,分層排列不同可以改變微波特性,如分層E在16GHz頻率時會產生共振使吸收損耗增加,改變分層排列也能增加吸收頻寬。
實驗最後將純巴克紙製作簡易吸波貼片覆蓋於天線上,進行天線場型量測,量測結果可由場型圖看出,在未放上巴克紙時場型圖呈現出完整圓形,放上巴克紙後場型圖出現明顯凹陷,由此證明巴克紙在吸波貼片應用是可行的,未來可藉此發展輕薄具可撓性之吸波貼片。

Since carbon nanotubes were discovered in 1991, its mechanical, optical, electrical and magnetic properties of excellent features that make in recent years become a very popular research direction, due to the small volume of carbon nanotubes, it is rarely a practical application in real life.

To enable us study the nanotubes at the macroscopic level, the sample was made by the aqueous solution of CNTs and the filtration method to make it into a paper like structure called as Bucky paper (BP).

In this investigation, we first mixed nano cobalt (Co), or copper oxide (CuO) or iron oxide (Fe3O4) powders in different weighting percentage into BP and then we make multilayer BP by mixing it with cobalt and copper oxide powers alternately. Finally we use the coaxial method to measure the RF absorption characteristics in different percentage and different layer configuration of doped Bucky papers. At the same time the hysteresis curves were also observed after the changes of magnetic behavior.

The results show that Bucky paper reduce transmission loss and return loss after a downward trend in doped samples, but when doping iron oxide was more than 30%, the transmission loss and return loss got upward trend, the transmission loss of went upward -11.21dB, and found the absorption loss had broadband absorption characteristic. In multilayer Bucky paper measurement results demonstrate that you can change the layered arrangement to make different microwave characteristics. For example the sample E will resonate so as to increase absorption loss at 16GHz. To change layered arrangement can also increase the absorption bandwidth.

Finally, we used Bucky paper to make a simple absorbing patch. The samples were covered on an antenna and to measure antenna field chart. The measurement results can be seen in antenna field chart, the field chart diagram showed a perfect circle without covering an absorbing material. But the EM field became suppression with a magnetic doped BP patch. Thus this proved that a Bucky paper absorbing patch is feasible, thereby to make a light and flexible absorbing material by modified BP will be applicable in the future.

總目錄
致謝 I
摘要 II
Abstract IV
總目錄 VI
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 文獻回顧 3
2.1奈米碳管簡介 3
2.2 奈米碳管之電磁特性 5
2.3 巴克紙(Buckypaper)簡介 5
2.4磁性原理簡介 6
2.4.1 順磁性[13] 7
2.4.2 鐵磁性[14] 7
2.4.3 反磁性[13] 8
2.4.4 亞鐵磁性[12] 9
2.2.5 反鐵磁性[14] 9
2.5 同軸電纜線簡介[15] 10
2.6 吸波材料簡介[16] 13
2.7 四氧化三鐵簡介 15
第三章 實驗架構與量測儀器介紹 16
3.1 實驗架構 16
3.2實驗樣本製備 17
3.2.1巴克紙製作 17
3.2.2四氧化三鐵製備[18] 20
3.2.2 Co及CuO奈米粉體製作 21
3.3量測夾具介紹[17] 23
3.4 實驗儀器介紹 24
3.4.1 X光繞射儀[19] 24
3.4.2 場發射掃描式電子顯微鏡(FE-SEM) 26
3.4.3 能量分散光譜儀(Energy Dispersive Spectrometer, EDS) 27
3.4.4低溫四點探針(Four Point Probe)系統[21-24] 28
3.4.5網路分析儀(Network Analyzer) 30
第四章 實驗結果與討論 33
4.1 X光繞射分析 33
4.2摻雜鈷奈米粉體巴克紙之微波量測 35
4.3摻雜氧化銅奈米粉體巴克紙之微波量測 39
4.4摻雜四氧化三鐵奈米粉體巴克紙之微波量測 43
4.5摻雜鈷及氧化銅分層巴克紙之微波量測 45
4.5.1分層A之微波量測 46
4.5.2分層B、E之微波量測 49
4.5.3分層B、C、D之微波量測 55
4.5.4分層F、I之微波量測 61
4.5.5分層G、H之微波量測 68
4.6巴克紙之吸波貼片實驗 74
第五章 結論 77
5.1結論 77
5.2未來展望 78
參考文獻 79

[1] Iijima S., “Helical microtubules of graphitic carbon” , Nature, vol. 354 , pp.56-58. , 1991.
[2]T.W. Ebbesen and P.M. Ajayen, “Large-scale synthesis of carbon nanotubes”, Nature, vol.358, pp.220-222, 1992.
[3] Iijima S., Ichihashi T.,“Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, PP.603-605,1993.
[4]D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J.Vazquez and R.Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, vol. 363, pp.605-607, 1993 .
[5]N. Hamada, S. Sawada and A. Oshiyama, "New one-dimensional conductors: graphitic microtubules", Physical Review Letters, vol. 68, pp. 1579-1581, 1992
[6]J. W. Mintmire. et al., Physical Review Letters , vol.68, 631-634,1992.
[7]Teri Wang Odom, Jin-Lin Huang, Philip Kim & Charles M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, vol.391 pp.62-64, 1998
[8]成會名,張勁燕,"奈米碳管",五南圖書出版股份有限公司,2004
[9]http://case.ntu.edu.tw/hs/wordpress/?p=1655
[10] M. Hajian, K. T. Mathew and L. P. Ligthart, "Measurements of complex permittivity with waveguide resonator using perturbation technique", Microwave and Optical Technology Letters, vol. 21, pp. 269-272,1999.
[11] R. G. Carter, "Accuracy of microwave cavity perturbation measurements", Microwave theory and techniques, IEEE Transactions on, vol. 49, pp. 918-923, 2001
[12]http://highscope.ch.ntu.edu.tw/wordpress/?p=1629
[13]http://highscope.ch.ntu.edu.tw/wordpress/?p=22512
[14]http://highscope.ch.ntu.edu.tw/wordpress/?p=22506
[15]黃進芳, "微波工程",五南圖書出版股份有限公司,2005.
[16]Zhao Ling zhi ,HUShe jun ,LI Wei shan ,HE Qin yu ,CHEN Jun fang,”Absorbing Mechanism and Progress of Wave absorbing Materials” Modern Defence Technology,Vol.35,Feb,2007。
[17]陳睿瀚,”以傳輸線法量測氧化鋁改質奈米碳紙之微波量測”,翁海大學電機工程學系,2013。
[18]O.Karaagac “A Simple Way to Synthesize Superparamagnetic Iron Oxide Nanoparticles in Air Atmosphere: Iron Ion Concentration Effect” IEEE Transactions on Magnetics, VOL. 46, NO. 12, DECEMBER 2010。
[19]林麗娟,工業材料86期,p100~109,1994
[20]Kittle,Introduction to Solid State Physics,Chapter 2,31, (1988)
[21] http://www.mast-tech.com.tw/Resistivity%20Measurement.pdf
[22] 張俊彥, 施敏, "半導體元件物理與製作技術", 高立, pp. 40-44, 1996.
[23] Dieter K. Schroder, "SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION", Wiley, pp. 1-17, 1998.
[24] J. W. Mayer and S. S. Lau, "ELECTRONIC MATERIALS SCIENCE", Macmillian, pp. 34-35, 1990.
[25] 劉日新, “鋁膜微波微帶之製作及其電導之頻率溫度響應“ ,國立清華大學物理學系,1998

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊