(18.210.12.229) 您好!臺灣時間:2021/03/05 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇柏融
研究生(外文):Bo-Rung Su
論文名稱:以圓盤式UF薄膜進行藻類回收
論文名稱(外文):Microalgae Harvesting in a Membrane Bioreactor with Disc UF Membrane
指導教授:鄧宗禹鄧宗禹引用關係
指導教授(外文):Walter Den
口試委員:林明瑞高思懷顏宏偉
口試委員(外文):Min-Ray LinSue-Huai GauHong-Wei Yen
口試日期:2015-01-23
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:91
中文關鍵詞:微藻超濾膜微藻濃縮
外文關鍵詞:microalgaeUFmicroalgae harvesting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
薄膜分離技術是現今回收微藻的方法,薄膜能有效地將微藻細胞分離,而其剩餘的培養基能回收利用,重新進行微藻養殖。本研究利用不同圓盤式薄膜(400B與400HB)過濾不同的藻類(螺旋藻及柵藻),探討其最佳操作參數之可行性研究。利用薄膜分離技術能有效地把微藻細胞濃縮,但微藻細胞會附著於薄膜表面,進而造成通量下降,降低濃縮效率。所以,如何有效預防通量下降為本研究之探討方向。結果顯示,400HB的薄膜比400B的薄膜有更好的過濾效率,能由阻抗值與孔隙度得知。柵藻因其細胞尺寸較小,所以薄膜通量下降較螺旋藻來得慢,且利用洗淨方式能讓薄膜通量回復較螺旋藻來得高。薄膜阻塞原因在於破碎細胞中的多醣及蛋白質造成薄膜阻塞,故本實驗利用FTIR分析得證。實驗中發現過濾時加入曝氣系統能延緩通量下降約20%,而反沖洗是最有效率的洗淨方式。當過濾時,結合曝氣與反沖洗的方式能使薄膜通量達到完全的回復。

關鍵字:微藻、超濾膜、微藻濃縮

Membrane ultrafiltration (UF) method is a simply separation method which is usually used for microalgae harvesting. However, membrane fouling is an important problem that decreases the performance of microalgae harvesting. The aim of this research is study of different disc-type UF membrane filtrations (400B and 400HB) on harvesting of two different microalgae (Spirulina maxima and Scenedesmus obliquus), to investigate the optimum operating parameters for filtration-remediation process. Moreover, cause of membrane fouling was also studied in this research. The result indicated that 400HB membrane predominantly shows higher efficiency of membrane filtration than 400B membrane, corresponded with initial resistance, reversible resistance and irreversible resistance owning to higher porosity. Scenedesmus obliquus causes slower membrane fouling because of its smaller sizes and can be easily remediated than Spirulina maxima. The membrane fouling can also be caused by the polysaccharides and proteins from broken cells also not only for the cells, confirmed by FTIR study. It was found that fouling process can be temporized up to 20 % when applied aeration system during filtration process. Backwash cleaning method is the most effective cleaning method and the flux decline can be completely recovered when combining aeration with backwash cleaning method.

Keywords: microalgae, UF, harvesting

Table of Content
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 3
Chapter 2 Literature Review 5
2.1 Background 5
2.2 Microalgae 6
2.2.1 Application of microalgae 6
2.2.2 CO2 capture with microalgae 8
2.3 Membrane theory and technology 8
2.3.1 Membrane separation technique 8
2.3.2 Critical flux and initial resistance 10
2.3.3 Membrane harvesting for microalgae 11
2.3.4 Membrane fouling by microalgae 12
2.3.5 Energy consumption comparison 14
Chapter 3 Methodology 18
3.1 Materials and Apparatus 18
3.1.1 Cultivation system 18
3.1.2 Instrument and apparatus 23
3.1.3 Chemicals 24
3.2 Microalgae cultivation 27
3.2.1 Microalgae 27
3.2.2 Culture media preparation 29
3.2.3 Cultivation procedure 31
3.3 Membrane filtration 31
3.3.1 Membrane 31
3.3.2 Membrane filtration system 32
3.3.3 Membrane initial resistance 33
3.3.4 Flux-stepping 34
3.3.5 Membrane cleaning method 34
Chapter 4 Results and Discussion 36
4.1 Membrane characterization 36
4.1.1 SEM 36
4.1.2 Cause of membrane fouling 38
4.2 Microalga harvesting by membrane filtration 42
4.2.1 Blank test 42
4.2.2 Resistance of membrane 43
4.2.2 S. maxima harvesting 46
4.2.3 S. obliquus harvesting 63
Chapter 5 Conclusions and Recommendations 72
5.1 Conclusions 72
5.2 Recommendations 74
Reference List 75



Abu-Khader, Mazen, M., 2006, “Recent progress in CO2 capture/sequestration: A review.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28:1261–1279.
Bacchin, P., Aimar, P., and Field, R. W., 2006, “Critical and sustainable fluxes: Theory, experiments and applications.” Journal of Membrane Science 281:42–69.
Baker, R., 2000, “Membrane technology and applications.” Wiley.
Barros, A. I., Gonçalves, A. L., Simões, M., and Pires, J. C. M., 2015, “Harvesting techniques applied to microalgae: A review.” Renewable and Sustainable Energy Reviews 41:1489–1500.
Bilad, M. R., Arafat, H. A., and Vankelecom, I. F. J., 2014, “Membrane technology in microalgae cultivation and harvesting: A review.” Biotechnology Advances 32:1283–1300.
Bilad, M. R., Vandamme, D., Foubert, I., Muylaert, K., and Vankelecom, I. F. J., 2012, “Harvesting microalgal biomass using submerged microfiltration membranes.” Bioresource Technology 111:343–352.
Brennan, L., and Owende, P., 2010, “Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products.” Renewable and Sustainable Energy Reviews 14:557–577.
Chisti, Y., 2007, “Biodiesel from microalgae.” Biotechnology Advances 25:294–306.
Dor, I., 1975, “High density, dialysis culture of algae on sewage.” Water Research 9 :251–254.
Drews, A., 2010, “Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures.” Journal of Membrane Science 363:1–28.
Field, R. W., Wu, D., Howell, J. A., and Gupta, B. B., 1995, “Critical flux concept for microfiltration fouling.” Journal of Membrane Science 100:259–272.
Field, R. W., and Pearce, G. K., 2011, “Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.” Advances in Colloid and Interface Science 164:38–44.
Greenwell, H. C., Laurens, L. M., Shields, R.J., Lovitt, R.W., and Flynn, K.J., 2010, “Placing microalgae on the biofuels priority list: a review of the technological challenges.” J. R. Soc. Interface 7:703–726.
Hossain M.M., de Lasa H.I., 2008, “Chemical-looping combustion (CLC) for inherent CO2 eparation—a review.” Chemical Engineering Science.
Lam, M.K., and Lee, K.T., 2012,“Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production,” Appl. Energy. 94, 303–308.
Lee, J.S., and Lee, J.P., 2003, “Review of advances in biological CO2 mitigation technology.” Biotechnology and Bioprocess Engineering 8:354–359.
Mirón, A. S., Garcı́a, M. C. C., Gómez, A. C., Camacho, F. G. C., Grima, E. M., and Chisti, Y., 2003, “Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors.” Biochemical Engineering Journal 16:287–297.
Mulder, M., 1996, “Basic principles of membrane technology.” Kluwer.
Sawayama, S., Inoue, S., Dote, Y., and Yokoyama, S.-Y., 1995, “CO2 fixation and oil production through microalga.” Energy Conversion and Management 36:729–731.
Shelef, G., Sukenik, A., and Green, M., 1984, “Microalgae harvesting and processing: A literature review” U.S. Department of Energy.
Uduman, N., Ying Q., Danquah, M. K., Forde, M.G., and Hoadley, A., 2010, “Dewatering of microalgal cultures: A major bottleneck to algae-based fuels.” Journal of Renewable and Sustainable Energy 2:012701.
Wang, B., Li, Y., Wu, N., and Lan, C. Q., 2008, “CO2 bio-mitigation using microalgae.” Applied Microbiology and Biotechnology 79:707–718.
Wicaksana, F., Fane, G. A., Pongpairoj P., Field, R., 2012, “Microfiltration of algae (Chlorella sorokiniana): Critical flux, fouling and transmission.” Journal of Membrane Science 387–388:83–92.
Tongprawhan W., Srinuanpan, S., Cheirsilp B., 2014, “Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid.” Bioresource Technology 170:90–99.
Yanagi, M., Watanabe, Y., and Saiki, H., 1995, “CO2 fixation by Chlorella sp. HA-1 and its utilization.” Energy Conversion and Management 36:713–716.
Yun, Y. S., Lee, S. B., Park, J. M., Lee C. I., and Yang J.W., 1997, “Carbon dioxide fixation by algal cultivation using wastewater nutrients.” Journal of Chemical Technology & Biotechnology 69:451–455.
Zhang, X., Hu Q., Sommerfeld M., Puruhito E., and Chen Y., 2010, “Harvesting algal biomass for biofuels using ultrafiltration membranes.” Bioresource Technology 101:5297–5304.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔