跳到主要內容

臺灣博碩士論文加值系統

(100.28.231.85) 您好!臺灣時間:2024/11/14 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪駿耀
研究生(外文):Jun-Yao Hong
論文名稱:人造煤製作及其特性之研究
論文名稱(外文):A Study on Manufacturing and Characteristics of Artificial Coal
指導教授:章裕民章裕民引用關係
指導教授(外文):Yu-Min Chang
口試委員:張添晉江康鈺
口試日期:2015-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:103
語文別:中文
中文關鍵詞:生質廢棄物、人造煤、著火溫度、熱重分析、相似度
外文關鍵詞:BiowasteArtificial CoalIgnition TemperatureThermogravimetric AnalysisSimilarity
相關次數:
  • 被引用被引用:12
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
由於我國能源需求快速上昇,且再生能源比例低,若能利用生質廢棄物製成人造煤燃料,進而取代化石燃料應為現今重要的課題。本研究主要精挑廢棄物中熱值高且含氯量低之生質廢棄物作為製作人造煤(Artificial Coal, AC)的材料,利用不同摻配比例之生質廢棄物、碳黑及廢食用油進行混合壓錠以研製人造煤,並藉由基本特性、硬度及燃燒性質,探討本研究所研製人造煤與天然煤之相似性。
由基本特性與熱重實驗結果可知人造煤添加碳黑比例增加,可提昇其熱值、碳含量與固定碳且減少與天然煤之熱重差異;由硬度實驗發現人造煤添加廢食用油之比例增加,其硬度略有降低;由著火溫度分析得知因人造煤之揮發份較天然煤高,故人造煤較易於著火且有較佳的著火性能。綜合本研究探討之性質與天然煤進行比較,其結果發現摻配比例為碳黑50 wt%、廢木竹類24 wt %、廢紙類10 wt %、廢纖維布類10 wt %、廢食用油5 wt %及碳酸鈣1 wt %之人造煤較相似於天然煤,其熱值為6,941 kcal/kg、固定碳為39.63 wt%、碳含量為68.53 wt%、莫氏硬度為1.5、著火溫度為315.54℃與差異面積值為2.4973 mgs-1℃,而此配比人造煤與天然煤之總相似度約為0.62 (1.0為完全相似),高於其它配比之人造煤,表示其性質與天然煤之相似程度約達62%。此外,由成本概估可知生產人造煤所需之總成本(操作成本與固定成本)約為678元/噸,相較於國內市售燃煤每噸約900至1,500元價格便宜,故人造煤有取代燃煤之機會。
Rapid increase in the demand for domestic energy and an on-going lack of renewable energy sources have prompted researchers to find alternative sources of energy. The transformation of biowaste into artificial coal appears to be a workable solution to the problem of overcoming our reliance on fossil fuels. This study selected biowaste with a high calorific value and relatively low chlorine content for the creation of artificial coal (AC). We began by blending biowaste, carbon black and waste cooking oil under compression to manufacture artificial coal. We then examined the similarities between the artificial coal and natural coal with regard to basic features, hardness and combustion characteristics.
In this study, the results of experiment show that the ratio of carbon black in AC is positively correlated with its calorific value, carbon content, and fixed carbon. Furthermore, our findings show that an increase in the content of carbon black reduces the disparity between artificial coal and natural coal. We found that the ratio of waste cooking oil is negatively correlated with hardness. Ignition point analysis demonstrated that artificial coal is more prone to ignition and has better flammability than natural coal. Experimental results show that artificial coal comprising 50 wt% carbon black, 24 wt % waste woods, 10 wt % waste paper, 10 wt % waste textiles, 5 wt % waste cooking oil, and 1 wt % calcium carbonate most closely resembles natural coal. The calorific value of this AC is 6,941 kcal/kg, the fixed carbon is 39.63 wt%, and the carbon content is 68.53 wt% with the value of 1.5 on Mohs mineral hardness scale and ignition temperature of 315.54℃, and the disparity area value of 2.4973 mgs-1℃. The artificial coal with this compound ratio presents the greatest similarity to natural coal with a similarity value of 0.62 (where 1.0 indicates total similarity).
The gross cost of production (operating costs and fixed costs) of the artificial coal was estimated at TWD 678/ton, which is considerably lower than the current market price of natural coal ranging from TWD 900 to 1,500/ton. These findings demonstrate the potential applicability of using artificial coal as a replacement for natural coal in the future.
摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 引言 1
1.2 研究動機 6
1.3 研究目的 7
第二章 文獻回顧 8
2.1生質能 8
2.1.1生質物與生質能源 8
2.1.2生質廢棄物 9
2.2 都市垃圾 10
2.2.1 廢棄物來源 11
2.2.2 廢棄物組成 12
2.3 人造煤 16
2.3.1 人造煤定義 16
2.3.2 人造煤製備方法 17
2.3.3 基本特性 19
2.3.4 燃燒性質 25
第三章 研究內容與方法 33
3.1 研究內容與架構 33
3.2 垃圾樣本採集來源與方式 36
3.2.1 採樣對象 36
3.2.2 垃圾採樣方法 38
3.2.3 採樣器具 43
3.3 研究方法 45
3.3.1 實驗流程 47
3.3.2 人造煤材料的挑選與備製 47
3.3.3 實驗方法與器材 49
第四章 結果與討論 65
4.1 人造煤原料選配結果 65
4.2 人造煤基本特性 69
4.2.1 壓錠成型結果 69
4.2.2 熱值測定結果 76
4.2.3 近似分析實驗結果 78
4.2.4 元素分析實驗結果 82
4.2.5 硬度分析實驗結果 87
4.3 燃燒特性分析 93
4.3.1 著火溫度、最大失重率及最大失重率溫度 93
4.3.2 熱重分析實驗結果 97
4.4 相似度 116
4.5 工程規劃設計 124
第五章 結論與建議 135
5.1 結論 135
5.2 建議 137
參考文獻 138
附錄 143
1.謝克昌,煤的結構與反應性,北京:科學出版社,2002,第22-26頁。
2.羅國肇,廢棄物衍生燃料氣化之合成燃氣中HCl氣體之去除研究,碩士論文,中原大學化學工程研究所,桃園,2002。
3.張翊峰、林健榮、錢紀銘、洪春守,「以多元迴歸分析模式建立臺灣地區垃圾發熱量本土化經驗公式之研究」,嘉南學報,嘉南藥理科技大學環境工程與科學系,第29期,2003,第193-201頁。
4.巫慧瑜,焚化過程中氯化氫及含氯有機污染物之探討,碩士論文,國立中興大學環境工程研究所,台中,2004。
5.楊子忠,渦漩式流體化床燃燒爐中RDF與煤碳混燒之研究,碩士論文,中原大學化學工程研究所,桃園,2004。
6.林家賢,變動溫度下生質廢棄物異相著火特性之研究,碩士論文,國立嘉義大學生物機電工程學系,嘉義,2005。
7.劉力旗,垃圾強制分類政策對垃圾資源回收分選廠設置效益探討研究-以花蓮縣北區廠為例,碩士論文,國立中央大學環境工程研究所,桃園,2006。
8.吳耿東、李宏台,「全球生質能源應用現況與未來展望」,林業研究專訊,第14卷,第3期,2007,第5-9頁。
9.蔡智琦,添加廢食用油影響RDF性質之研究,碩士論文,國立國立臺北科技大學環境工程與管理研究所,臺北,2007。
10.謝志強、殷正華,「全球生質能源產業與技術發展現況與趨勢」,科技發展政策報導,第5期,2008,第15-39頁。
11.洪銘謙、甯蜀光,「垃圾衍生燃料之生命週期評估」,第二十一屆環境規劃與管理研討會,2008。
12.蔡萬豐,一般事業廢棄物分選場效益研究-以可燃性廢棄物為例,碩士論文,國立中央大學環境工程研究所,桃園,2011。
13.王凱民,生質物氣化之熱重性質分析及鈀銀合金膜管純化合成氣之研究,碩士論文,逢甲大學化學工程研究所,台中,2012。
14.蕭奕興,常壓微波電漿轉化生質廢棄物產氫之研究,碩士論文,國立中山大學環境工程研究所,高雄,2012。
15.劉芝佑,RDF改質以研製人造煤之研究,碩士論文,國立國立臺北科技大學環境工程與管理研究所,臺北,2012。
16.黃元宏,改質廢棄物衍生燃料之人造煤特性研究,碩士論文,國立國立臺北科技大學環境工程與管理研究所,臺北,2013。
17.吳俊德,台灣六種主要焙燒竹材燃料性質之研究,碩士論文,國立台灣大學生物資源暨農學會森林環境暨資源學系,臺北,2013。
18.呂建勳,以生質廢棄物研製生質煤特性之研究,碩士論文,國立國立臺北科技大學環境工程與管理研究所,臺北,2015。
19.A. Bosmans, C. De Dobbelaere and L. Helsen, &;quot;Pyrolysis characteristics of excavated waste material processed into refuse derived fuel,&;quot; Fuel, vol. 122, 2014, pp. 198-205.
20.A. Borison, G. Hamm, P. Narodick, &;quot;Bio-coal options,&;quot; Public Utilit Fortnight, vol. 148, 2010, pp. 31-35.
21.A. V. Bridgwater, &;quot;Biomass for energy,&;quot; J.Sci.Food Agric, vol. 86, 2006, pp. 1755-1768.
22.C. Wu, Z. Wang, J. Huang and P. T. Williams, &;quot;Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts,&;quot; Fuel, vol. 106, 2013, pp. 697-706.
23.C. S. Chyang, Y. L. Han, L. W. Wu, H. P. Wan, H. T. Lee and Y. H. Chang, &;quot;An investigation on pollutant emissions from co-firing of RDF and coal,&;quot; Waste Management, vol. 30, 2010, pp. 1334-1340.
24.D. Mohan, C. U. Pittman and P. H. Steele, &;quot;Pyrolysis of wood/biomass for bio-oil: a critical review,&;quot; Energy &; Fuels, vol. 20, 2006, pp. 848-889.
25.D. R. Nhuchhen and P. A. Salam, &;quot;Estimation of higher heating value of biomass from proximate analysis: A new approach,&;quot; Fuel, vol. 99, 2012, pp.55-63.
26.D. W. Van Krevelen, &;quot;Graphical-statistical method for the study of structure and reaction processes of coal,&;quot; Fuel, vol. 29, 1950, pp. 269-284.
27.G. V. Khemchandani and S. Sarkar, &;quot;Studies on artificial coal. 2. Thermogravimetry, plastometry and differential thermal analysis,&;quot; Fuel, vol. 55, 1976, pp. 303-308.
28.H. Haykırı-Açma, &;quot;Combustion characteristics of different biomass materials,&;quot; Energy Conversion and Management, vol. 44, 2003, pp. 155-162.
29.J. Parikh, S. A. Channiwala, and G. K. Ghosal, &;quot;A correlation for calculating HHV from proximate analysis of solid fuels,&;quot; Fuel, vol. 84, 2005, pp. 487-494.
30.J. Gug, D. Cacciola, and M. J.Sobkowicz, &;quot;Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics,&;quot; Waste Management, vol. 35, 2015, pp. 283-292.
31.J. Wesseler, &;quot;Opportunities costs matter: A comment on Pimentel and Patzek Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower,&;quot; Energy Policy 35, 2007, pp. 1414-1416.
32.J. H. Peng, S. Sokhansanj and C. J. Lim, &;quot;Torrefaction and densification of different species of softwood residues,&;quot; Fuel, vol. 111, 2013, pp. 411-421.
33.L. Devi, K. J. Ptasinski and F. J. Janssen, &;quot;A review of the primary measures for tar elimination in biomass gasification processes,&;quot; Biomass and Bioenergy, vol. 24, 2003, pp. 125-140.
34.L. Wang, M. Lurina, J. Hyytiäinen and E. Mikkonen, &;quot;Bio-coal market study: Macro and micro-environment of the bio-coal business in Finland,&;quot; Biomass and Bioenergy, vol. 63, 2014, pp. 198-209.
35.M. Carrier, A. Loppinet-Serani, D. Denux, J. Lasnier, F. Ham-Pichavant, F. Cansell and C. Aymonier, &;quot;Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass,&;quot; Biomass and Bioenergy, vol. 35, 2011, pp. 298-307.
36.M. Ahmad and H. Subawi, &;quot;New Van Krevelen diagram and its correlation with the heating value of biomass,&;quot; Research Journal of Agriculture and Environmental Management, vol. 2, 2013, pp. 295-301.
37.M. M. Massaro, S. F. Son and L. J. Groven, &;quot;Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders,&;quot; Fuel, vol. 115, 2014, pp. 62-69.
38.N. Watanabe, M. S. Yamamoto and J. Fukuyama, &;quot;Combustible and incombustible speciation of Cl and S in various components of municipal solid waste,&;quot; Waste Management, vol. 24, 2004, pp. 623-632.
39.Q. Hu, J. Shao, H. Yang, D. Yao, X. Wang and H.Chen, &;quot;Effects of binders on the properties of bio-char pellets,&;quot; Applied Energy, vol. 66, 2015, pp. 120-129.
40.R. Marsh, A. J. Griffiths, K. P. Williams and S. J. Wilcox, &;quot;Physical and thermal properties of extruded refuse derived fuel,&;quot; Fuel Processing Technology, vol. 88, 2007, pp. 701-706.
41.R. Miranda, C. Sosa-Blanco, D. Bustos-Martinez and C. Vasile, &;quot;Pyrolysis of texile wastes I. Kinetics and yields,&;quot; Analytical and Applied Pyrolysis, vol 80, 2007, pp. 489-495.
42.S. S. Idris, N. A. Rahman, K. Ismaill, A. B. Alias, Z. A. Rashid and M. J. Aris, &;quot;Investigation on themochemical behaviour of low rank Malaysian coal,oil palm biomass and and their blends during pyrolysis via thermogravimetric analysis(TGA),&;quot; Bioresource Technology, vol. 101, 2010, pp. 4584-4592.
43.S. S. Thipse, C. Sheng, M. R. Booty, R. S. Magee and J. W. Bozzelli, &;quot;Chemical makeup and physical chacterization of a syntheticfule and methods of heat content evaluation for studies on MSW incineration,&;quot; Fuel, vol. 81, 2002, pp. 211-217.
44.S. S. Idris, N. A. Rahman, K. Ismaill, A. B. Alias, Z. A. Rashid and M. J. Aris, &;quot;Investigation on themochemical behaviour of low rank Malaysian coal,oil palm biomass and and their blends during pyrolysis via thermogravimetric analysis(TGA),&;quot; Bioresource Technology, vol. 101, 2010, pp. 4584-4592.
45.V. Yadav, B. P. Baruah and P. Khare, &;quot;Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals,&;quot; Bioresource technology, vol. 137, 2013, pp. 376-385.
46.V. Pasangulapati, K. D. Ramachandriya, A. Kumar, M. R. Wilkins, C. L. Jones and R. L. Huhnke, &;quot;Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass,&;quot; Bioresource technology, vol. 114, 2012, pp. 663-669.
47.W. Ma, G. Hoffmann, M. Schirmer, G. Chen and V. S. Rotter, &;quot;Chlorine characterization and thermal behavior in MSW and RDF,&;quot; Journal of Hazardous Materials, vol. 178, 2010, pp. 489-498.
48.W. B. Hauserman, &;quot;Hardness of Fine Ground Coals and Mineral Resides,&;quot; Powder Technology, vol. 43, 1985, pp. 75-87.
49.X. Liu, M. Chen and D. Yu, &;quot;Oxygen enriched co-combustion characteristics of herbaceous biomass and bituminous coal,&;quot; Thermochimica Acta, vol. 569, 2013, pp. 17-24.
50.X. R. Li, W. S. Lim, Y. Iwata and H. Koseki, &;quot;Thermal characteristics and their relevance to spontaneous ignition of refuse plastics/paper fuel,&;quot; Journal of Loss Prevention in the Process Industries, vol. 22, 2009, pp. 1-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top