跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊登凱
研究生(外文):Teng-Kai Yang
論文名稱:皮質骨的微小骨穿孔及骨切穿處理對老鼠矯正時牙齒移動速率影響的比較
論文名稱(外文):Comparison of the effects of micro-osteoperforations and corticision on the rate of orthodontic tooth movement in rats
指導教授:蔡吉陽蔡吉陽引用關係
指導教授(外文):Chi-Yang Tsai
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:牙醫學系碩博士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:48
中文關鍵詞:骨穿孔骨切穿加速矯正移動牙齒
外文關鍵詞:micro-osteoperforationcorticisionacceleratory orthodontic tooth movement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
論文名稱: 皮質骨的微小骨穿孔及骨切穿處理對老鼠矯正時牙齒移動速率影響的比較
臺北醫學大學
口腔醫學院牙醫學系碩士班臨床組
研究生姓名:楊登凱
畢業時間:103年度第2學期
指導教授:蔡吉陽(臺北醫學大學口腔醫學院牙醫學系所副教授)


<研究目的>:

一般成年人做齒顎矯正,平均時間大約是兩年,而越長的治療時間可能會增加一些風險。因此,臨床上一直希望有新的突破來加速齒顎矯正。

近年來骨創傷後促使牙齒加速移動,變成一個熱門的議題。而微小骨穿孔及骨切穿皆被證實有局部加速牙齒移動現象。本篇實驗目的,希望在實驗老鼠身上,比較齒槽骨的微小骨穿孔及骨切穿對牙齒矯正移動速率的影響。

<材料與方法>:

本實驗選用45隻8周大的Sprague Dawley成年雄性大鼠,隨機分為三組。每隻老鼠於第一天給予矯正拉力拉動左上第一大臼齒,實驗兩組加上手術創傷。

●實驗組I: 微小骨穿孔+矯正力量
實驗組II: 骨切穿+矯正力量
實驗組III: 單純矯正力量 (控制組)

實驗時間總共六週,每週紀錄牙齒移動情形。在第三及六週時,各組犧牲一半數量,觀察骨密度,蝕骨細胞的數量是否差異。


<結果>:

實驗兩組牙齒移動距離在第二周時,顯著的比控制組移動量多。在總實驗六週後,實驗組總移動量仍比控制組大,但沒有達到統計上顯著差異。比較兩實驗組在這六周內牙齒移動距離,則都沒有顯著差異。

骨密度(BV/TV)在T3時,三組之間沒有顯著差異。到T6時,骨穿孔(MOP + F) 組則顯著下降。骨礦化密度(BMD),實驗兩組在T3及T6時都明顯的比控制組來得低。

從組織切片計算蝕骨細胞數量。在T3時,實驗兩組數量明顯比控制組多。而T6時,實驗兩組數量稍微下降但仍比控制組多,控制組數量則維持水平。另外可以觀察不管在T3及T6時到實驗兩組牙根吸收皆比控制組F少。


<結論>:

經過微小骨穿孔及骨切穿手術,可以增加骨質質代謝、重塑能力,增加蝕骨細胞數量,而使牙齒移動有局部加速現象發生。另外也可以降低牙根吸收的嚴重程度。在實驗前兩週時可以顯著地加速老鼠牙齒矯正移動。


Title of Thesis:
Comparison of the effects of micro-osteoperforations and corticision on the rate of orthodontic tooth movement in rats
Author: Teng-Kai Yang
Thesis directed by: Chi-Yang Tsai, DDS, PhD (Graduate Institute of Oral Science, College of Oral Medicine, Taipei Medical University)


<Objectives>:

In contemporary orthodontic treatment, it takes an average of two years for adult patients to complete. It has been shown that prolonged treatment time raises some risks due to difficulties in maintaining periodontal health. Result in higher caries risk, gingival recession, and more root resorption. In addition to the above mentioned risks, prolonged treatment may be more likely to decrease satisfaction of patients. Therefore, there is a goal to accelerate orthodontic tooth movement in clinical orthodontic practices.

In recent years, accelerated orthodontic tooth movement caused by “regional acceleratory phenomenon (RAP)” after surgical trauma has become a popular issue. It has been suggested there is regional accelerated tooth movement after micro-osteoperforation and corticision.

We aim to compare the two different less invasive approaches in tooth movement acceleration by using movement distance, density changes of alveolar bone, and numbers of osteoclasts as the criteria.


<Materials & Methods>:

In this study, 45 male adult Sprague-Dawley rats were enrolled at 8 weeks of age. On first day, upper left first molars were pulled forward by orthodontic appliance from upper incisor as anchorage in all groups. Surgical interventions were conducted in Group I and II.

 The rats were randomly divided into 3 groups: I, II and III
Group I: micro-osteoperforation + orthodontic force
Group II: corticision + orthodontic force
Group III (control): orthodontic force only

The experimental duration was 6 weeks, and distance of tooth movement was observed every week. Half of the rats in all groups were sacrificed on week 3, while the others were sacrificed on week 6. Alveolar bone density and the quantity of osteoclasts were evaluated using microcomputed tomography and histological examination, respectively.


<Results>:

The distances of tooth movement of the both experiment groups were significantly greater than the control side at T2 (p=0.04). At the final phase of the experiment T6, the total tooth movement was 3.18±0.92mm in MOP + F, and it was 3.11±0.40mm in C + F, while it was 2.80±0.56mm in the control group F. There were no significant differences in weekly tooth movement between MOP + F and C + F within 6 weeks.

The bone density of BV/TV decreased in the MOP + F (55.52±15.52%) and C + F (58.07±4.92%) at T3, but the differences were not statistically significant when compared with the controls (60.56±11.45%). In the changes of BMD, we found significant decrease (P<0.05) between the both experiment groups and the control F group at both T3 and T6.

The quantity of osteoclasts in the MOP + F group was 14.80±1.64 on average, and it was 16.00±4.42 in C + F, but only 5.40±3.05 in the F group at T3. At T6, the statistics showed no difference. Both the two experiment groups showed that osteoclasts decreased to 11.17±6.18 and 11.25±2.22, while the F group increased to 6.0±2.19.


<Conclusions>:

 The two flapless minor surgeries increased bone remodeling, osteoclast activity, and faster orthodontic tooth movement in at lease 2 weeks in rats.
 Surgical interventions decreased the severity of root resorption.
 There were no obvious differences between flapless micro osteo-perforation and corticision in rats.



<key words>: micro-osteoperforation, corticision, acceleratory orthodontic tooth movement.


目錄
Table of Contents--vii
Table caption--ix
Figure caption--x
Chinese Abstract--xi
English Abstract--xiv

Chapter 1: Introduction 1
1.1 General background 1
1.2 Research rationale 2
1.3 Research Purpose 3
1.4 Hypothesis of the research 3
Chapter 2: Literature Review 4
2.1 Biological response and orthodontic tooth movement 4
2.2 Regional acceleratory phenomenon 5
2.3 Surgical trauma induce faster tooth movement 5
2.3.1 Alveolar corticotomy and decortication 5
2.3.2 Corticision 7
2.3.3 Micro-osteoperforation 7
2.4 Effects of flap elevation to accelerate orthodontic tooth movement 9
Chapter 3: Materials and Methods 10
3.1 Materials 10
3.2 Methods 11
3.2.1 Anesthesia 11
3.2.2 Orthodontic appliances application 11
3.2.3 Application of corticision 12
3.2.4 Application of micro-osteoperforation 13
3.2.5 Tooth movement measurement 13
3.2.6 in vivo model 13
3.2.7 Micro-computed Tomography Analysis 14
3.2.8 Histological analysis 15
3.2.9 Statistical Analysis 15
Chapter 4: Results 16
4.1 The orthodontic tooth movement 16
4.2 Micro-CT analysis 18
4.3 Histology analysis 19
Chapter 5: Discussion 21
Chapter 6: Conclusion 27
Chapter 7: Figures and Tables 28
Chapter 8: Reference 44

Table Captions
Table 1: Distance of orthodontic tooth movement.--42
Table 2: BV/TV and BMD over the contralateral side.--43


Figure Captions
Figure1: Illustration of upper left first molar protraction.--28
Figure2: Schematic of corticision.--29
Figure3: Schematic of micro-osteoperforation.--30
Figure4: Micro-CT shows region of interest (ROI) to measure the bone density.--31
Figure5: Micro-CT shows the distance between upper left first and second molar.--32
Figure6: Distance of orthodontic tooth movement. --33
Figure7: Velocity of orthodontic tooth movement (mm/week).--34
Figure8: Bone density (BV/TV). --35
Figure9: Bone mineral density (BMD). --36
Figure10: BV/TV and BMD over the contralateral side. --37
Figure11: Distance of orthodontic tooth movement measured from micro-CT. --38
Figure12: The quantity of osteoclasts. --39
Figure13: Root resorption at T3 and T6. --40
Figure14: Root resorption over the right side of maxilla.--41


Alexander, S. A. (1991). Effects of orthodontic attachments on the gingival health of permanent second molars. Am J Orthod Dentofacial Orthop, 100(4), 337-340. doi: 10.1016/0889-5406(91)70071-4

Alikhani, M., Raptis, M., Zoldan, B., Sangsuwon, C., Lee, Y. B., Alyami, B., . . . Teixeira, C. (2013). Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofacial Orthop, 144(5), 639-648. doi: 10.1016/j.ajodo.2013.06.017

AM, G. E. (1980). Mucogingival problems and the movement of mandibular incisors: a clinical review. Am J Orthod, 78(5), 511-527.
Baloul, S. S., Gerstenfeld, L. C., Morgan, E. F., Carvalho, R. S., Van Dyke, T. E., & Kantarci, A. (2011). Mechanism of action and morphologic changes in the alveolar bone in response to selective alveolar decortication-facilitated tooth movement. Am J Orthod Dentofacial Orthop, 139(4 Suppl), S83-101. doi: 10.1016/j.ajodo.2010.09.026

Cho, K. W., Cho, S. W., Oh, C. O., Ryu, Y. K., Ohshima, H., & Jung, H. S. (2007). The effect of cortical activation on orthodontic tooth movement. Oral Dis, 13(3), 314-319. doi: 10.1111/j.1601-0825.2006.01286.x

Cohen, G., Campbell, P. M., Rossouw, P. E., & Buschang, P. H. (2010). Effects of increased surgical trauma on rates of tooth movement and apical root resorption in foxhound dogs. Orthod Craniofac Res, 13(3), 179-190. doi: 10.1111/j.1601-6343.2010.01494.x

Darendeliler, M. A., Sinclair, P. M., & Kusy, R. P. (1995). The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement. Am J Orthod Dentofacial Orthop, 107(6), 578-588.
Davidovitch, Z. (1991). Tooth movement. Crit Rev Oral Biol Med, 2(4), 411-450.
Davidovitch, Z., Finkelson, M. D., Steigman, S., Shanfeld, J. L., Montgomery, P. C., & Korostoff, E. (1980a). Electric currents, bone remodeling, and orthodontic tooth movement. I. The effect of electric currents on periodontal cyclic nucleotides. Am J Orthod, 77(1), 14-32.
Davidovitch, Z., Finkelson, M. D., Steigman, S., Shanfeld, J. L., Montgomery, P. C., & Korostoff, E. (1980b). Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod, 77(1), 33-47.
Davidovitch, Z., Nicolay, O. F., Ngan, P. W., & Shanfeld, J. L. (1988). Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent Clin North Am, 32(3), 411-435.
Frost, H. M. (1983). The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J, 31(1), 3-9.
Gantes, B., Rathbun, E., & Anholm, M. (1990). Effects on the periodontium following corticotomy-facilitated orthodontics. Case reports. J Periodontol, 61(4), 234-238. doi: 10.1902/jop.1990.61.4.234

Kawasaki, K., & Shimizu, N. (2000). Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med, 26(3), 282-291.
Kim, S. J., Moon, S. U., Kang, S. G., & Park, Y. G. (2009). Effects of low-level laser therapy after Corticision on tooth movement and paradental remodeling. Lasers Surg Med, 41(7), 524-533. doi: 10.1002/lsm.20792

Kim, S. J., Park, Y. G., & Kang, S. G. (2009). Effects of Corticision on paradental remodeling in orthodontic tooth movement. Angle Orthod, 79(2), 284-291. doi: 10.2319/020308-60.1

Kole, H. (1959a). Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol, 12(3), 277-288 contd.
Kole, H. (1959b). Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol, 12(4), 413-420 contd.
Kole, H. (1959c). Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Pathol, 12(5), 515-529 concl.
Krishnan, V. (2005). Critical issues concerning root resorption: a contemporary review. World J Orthod, 6(1), 30-40.
Krishnan, V., & Davidovitch, Z. (2006). Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop, 129(4), 469 e461-432. doi: 10.1016/j.ajodo.2005.10.007

Mathews, D. P., & Kokich, V. G. (2013). Accelerating tooth movement: the case against corticotomy-induced orthodontics. Am J Orthod Dentofacial Orthop, 144(1), 5-13. doi: 10.1016/j.ajodo.2013.04.008

Mostafa, Y. A., Mohamed Salah Fayed, M., Mehanni, S., ElBokle, N. N., & Heider, A. M. (2009). Comparison of corticotomy-facilitated vs standard tooth-movement techniques in dogs with miniscrews as anchor units. Am J Orthod Dentofacial Orthop, 136(4), 570-577. doi: 10.1016/j.ajodo.2007.10.052

Pilon, J. J., Kuijpers-Jagtman, A. M., & Maltha, J. C. (1996). Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am J Orthod Dentofacial Orthop, 110(1), 16-23.
Reitan, K. (1960). Tissue behavior during orthodontic tooth movement. American Journal of Orthodontics, 46(12), 881-900.
Richter, A. E., Arruda, A. O., Peters, M. C., & Sohn, W. (2011). Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop, 139(5), 657-664. doi: 10.1016/j.ajodo.2009.06.037

Safavi, S. M., Heidarpour, M., Izadi, S. S., & Heidarpour, M. (2012). Effects of flapless bur decortications on movement velocity of dogs'' teeth. Dent Res J (Isfahan), 9(6), 783-789.
Sekhavat, A. R., Mousavizadeh, K., Pakshir, H. R., & Aslani, F. S. (2002). Effect of misoprostol, a prostaglandin E1 analog, on orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop, 122(5), 542-547. doi: 10.1067/mod.2002.126153

Stark, T. M., & Sinclair, P. M. (1987). Effect of pulsed electromagnetic fields on orthodontic tooth movement. Am J Orthod Dentofacial Orthop, 91(2), 91-104.
Teixeira, C. C., Khoo, E., Tran, J., Chartres, I., Liu, Y., Thant, L. M., . . . Alikhani, M. (2010). Cytokine expression and accelerated tooth movement. J Dent Res, 89(10), 1135-1141. doi: 10.1177/0022034510373764

van Leeuwen, E. J., Maltha, J. C., & Kuijpers-Jagtman, A. M. (1999). Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur J Oral Sci, 107(6), 468-474.
Vaziri, H. (2012). The effect of corticision on the rate of orthodontic tooth movement in rats. (Master), Connecticut. (349)

Wang, L., Lee, W., Lei, D. L., Liu, Y. P., Yamashita, D. D., & Yen, S. L. (2009). Tisssue responses in corticotomy- and osteotomy-assisted tooth movements in rats: histology and immunostaining. Am J Orthod Dentofacial Orthop, 136(6), 770 e771-711; discussion 770-771. doi: 10.1016/j.ajodo.2009.05.015

Weltman, B., Vig, K. W., Fields, H. W., Shanker, S., & Kaizar, E. E. (2010). Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop, 137(4), 462-476; discussion 412A. doi: 10.1016/j.ajodo.2009.06.021

Wilcko, W. M., Donald J. Ferguson, Bouquot, J. E., & Wilcko, T. (2003 ). Rapid Orthodontic Decrowding with Alveolar Augmentation: Case Report. Formerly World Journal of Orthodontics, 4(3), 197-205.
Wilcko, W. M., Wilcko, T., Bouquot, J. E., & Ferguson, D. J. (2001). Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent, 21(1), 9-19.
Yaffe, A., Fine, N., & Binderman, I. (1994). Regional accelerated phenomenon in the mandible following mucoperiosteal flap surgery. J Periodontol, 65(1), 79-83. doi: 10.1902/jop.1994.65.1.79

Yamaguchi, M., & Kasai, K. (2005). Inflammation in periodontal tissues in response to mechanical forces. Arch Immunol Ther Exp (Warsz), 53(5), 388-398.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top