(54.236.58.220) 您好!臺灣時間:2021/03/09 15:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高竹鋒
研究生(外文):Chu-Feng Kao
論文名稱:ZC3H12D 調控細胞生長及凋亡之研究
論文名稱(外文):Study of ZC3H12D on the regulation of cell proliferation and apoptosis
指導教授:梁有志梁有志引用關係
口試委員:林宜玲葉添順鄭雅文林仁傑
口試日期:2015-01-14
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學檢驗暨生物技術學系所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:51
中文關鍵詞:鋅指蛋白泛素細胞週期細胞凋亡
外文關鍵詞:ZC3H12DMCPIP4ubiquitinAktcell cycleapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ZC3H12D 是一種 CCCH 型鋅指蛋白質,屬於 MCPIP 蛋白質家族的一員。此家族蛋白質皆具有一個 CCCH zinc finger domain及 NYN domain,分別被認為具有 RNA 的結合及 RNase 功能相關。ZC3H12D 被報導為一新穎腫瘤抑制基因,其基因的突變在肺癌病人中具高發生率,且造成濾泡性淋巴瘤的惡化。近年發現 ZC3H12D 會抑制 JNK, ERK, NF-κB 訊息傳遞,且具有去泛素 (deubiquitination) 功能。本研究利用 Tet-on system 誘導 ZC3H12D 在 T-REx-293 細胞中的過度表現,結果發現 ZC3H12D 的過度表現會造成細胞存活率下降。由流式細胞儀分析發現 ZC3H12D 會造成細胞週期停滯於 G1 期及細胞凋亡。在分子機制方面,Akt 訊息傳遞路徑為調控細胞的增生、存活及細胞週期的進行最主要的路徑之一。ZC3H12D 的表現抑制 Akt 的 T308 與 S473磷酸化及其下游之訊息傳遞,如 FOXO1, Bad 及 GSK3β 的磷酸化,進而導致 Bcl-2/Bax 比例降低及 cyclin D 與 cyclin E 的降解,造成內因性細胞凋亡及細胞週期的停滯。近期研究發現,Akt 的活化需要經由Akt 泛素化 (ubiquitination),使之移動至細胞膜進行磷酸化。而我們發現 ZC3H12D 會與 Akt 蛋白質互相結合,並且抑制 Akt 泛素化。本實驗結果顯示 ZC3H12D 可能藉由降低 Akt 泛素化而抑制其訊息傳遞,進而導致細胞週期停滯於 G1 期及細胞凋亡。
ZC3H12D is a CCCH-type zinc finger protein which belongs to MCPIP protein family. All MCPIP proteins contain a CCCH-type zinc finger domain and a NYN domain, which has been proposed with RNA-binding activity and RNase activity, respectively. ZC3H12D is reported as a novel tumor suppressor evidenced by high frequency mutation in lung cancer and transformed follicular lymphoma. Recently, ZC3H12D has been shown to inhibit toll-like receptor (TLR) 2 and TLR4-activated JNK, ERK and NF-κB signaling, and have deubiquitination activity. In this study, we found that overexpression of ZC3H12D by Tet-on system in T-REx-293 cells inhibited cell proliferation through inducing cell cycle arrest in G1 phase and apoptosis. Akt-mediated signal transduction is very important for cell proliferation, survival and tumorigenesis. Overexpression of ZC3H12D reduced the phosphorylation of Akt itself at T308 and S473 residues and its downstream signal molecules such as FOXO1, Bad, and GSK3β, and subsequently leaded to decrease of Bcl-2/Bax ratio, cyclin D and cyclin E expression. It was recently reported that ubiquitination of Akt is required for its membrane recruitment and activation. We found that ZC3H12D interacted with Akt and then deubiquitinated Akt. Taken together, these results suggest that ZC3H12D might induce G1 arrest and apoptosis through down-regulation of Akt ubiquitination.
致謝 I
中文摘要 II
Abstract III
縮寫表 (Abbreviations) 3
第一章 緒論 (Introduction) 5
壹、 ZC3H12D 簡介 5
貳、 ZC3H12D與腫瘤抑制之關係 7
參、 細胞週期 (Cell cycle) 9
肆、 細胞凋亡 (Apoptosis) 10
一、 內因性路徑 (Intrinsic Pathway) 11
二、 外因性路徑 (Extrinsic Pathway) 11
三、 執行路徑 (Execution Pathway) 12
伍、 Akt 訊息傳遞路徑 (Akt signaling pathway) 13
一、 Akt 訊息傳遞路徑調控細胞週期與細胞凋亡 14
二、 Akt 的泛素化調控 Akt 的活化 15
陸、 研究目的 (Study Aim) 16
第二章 材料與方法 (Materials and methods) 17
壹、 材料 17
一、 細胞株 18
二、 藥物及抗體 (Chemicals and Antibodies) 18
貳、 實驗方法 20
一、 細胞培養 (Cell Culture) 20
二、 MTT 呈色分析法 (MTT Assay) 21
三、 流式細胞分析儀測定 (Flow Cytometry Analysis) 22
四、 西方墨點法 (Western Blot) 23
五、 免疫沉澱法 (Immunoprecipitation) 25
六、 統計分析 (Statistical Analysis) 25
第三章 結果 (Results) 26
一、 過度表現 ZC3H12D 造成細胞存活率下降與細胞型態改變 26
二、 過度表現 ZC3H12D 導致細胞週期停滯於 G1 期及細胞凋亡 27
三、 過度表現 ZC3H12D抑制 Akt 的磷酸化及其下游之訊息傳遞 27
四、 過度表現 ZC3H12D 促進內因性細胞凋亡及 caspase-8 的表現 28
五、 過度表現 ZC3H12D 抑制 cyclin D 及 cyclin E 的表現 29
六、 過度表現 ZC3H12D 降低 Akt 的 ubiquitination 29
第四章 討論 (Discussion) 31
第五章 參考文獻 (References) 37
第六章 目次圖表 (Figures list) 41
Figure 1. Overexpression of ZC3H12D inhibited cell proliferation in T-REx-293 cells. 42
Figure 2. Overexpression of ZC3H12D induced G1-arrest and apoptosis in T-REx-293 cells. 45
Figure 3. Overexpression of ZC3H12D inhibited the activation of Akt and its downstream signal molecules. 46
Figure 4. Overexpression of ZC3H12D induced intrinsic apoptosis pathways. 48
Figure 5. Overexpression of ZC3H12D down-regulated the protein expression of G1 phase-related proteins. 49
Figure 6. Overexpression of ZC3H12D decreased Akt ubiquitination. 51
Figure 7. ZC3H12D might induce G1 arrest and apoptosis through the inhibition of Akt ubiquitination. 52
1.Wang M, Vikis HG, Wang Y, Jia D, Wang D, Bierut LJ, Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM et al: Identification of a novel tumor suppressor gene p34 on human chromosome 6q25.1. Cancer research 2007, 67(1):93-99.
2.Minagawa K, Katayama Y, Nishikawa S, Yamamoto K, Sada A, Okamura A, Shimoyama M, Matsui T: Inhibition of G(1) to S phase progression by a novel zinc finger protein P58(TFL) at P-bodies. Molecular cancer research : MCR 2009, 7(6):880-889.
3.Lin RJ, Chien HL, Lin SY, Chang BL, Yu HP, Tang WC, Lin YL: MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic acids research 2013, 41(5):3314-3326.
4.Lin RJ, Chu JS, Chien HL, Tseng CH, Ko PC, Mei YY, Tang WC, Kao YT, Cheng HY, Liang YC et al: MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. Journal of immunology 2014, 193(8):4159-4168.
5.Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, Kolattukudy PE, Fu M: MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. The Journal of experimental medicine 2010, 207(13):2959-2973.
6.Huang S, Qi D, Liang J, Miao R, Minagawa K, Quinn T, Matsui T, Fan D, Liu J, Fu M: The putative tumor suppressor Zc3h12d modulates toll-like receptor signaling in macrophages. Cellular signalling 2012, 24(2):569-576.
7.You M, Bergman G: Preclinical and clinical models of lung cancer chemoprevention. Hematology/oncology clinics of North America 1998, 12(5):1037-1053.
8.Yamamoto K, Okamura A, Minagawa K, Yakushijin K, Urahama N, Gomyo H, Shimoyama M, Itoh M, Matsui T: A novel t(2;6)(p12;q23) appearing during transformation of follicular lymphoma with t(18;22)(q21;q11) to diffuse large cell lymphoma. Cancer genetics and cytogenetics 2003, 147(2):128-133.
9.Sherr CJ: Cancer cell cycles. Science 1996, 274(5293):1672-1677.
10.Coleman ML, Marshall CJ, Olson MF: RAS and RHO GTPases in G1-phase cell-cycle regulation. Nature reviews Molecular cell biology 2004, 5(5):355-366.
11.Horvitz HR: Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer research 1999, 59(7 Suppl):1701s-1706s.
12.Elmore S: Apoptosis: a review of programmed cell death. Toxicologic pathology 2007, 35(4):495-516.
13.Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 1972, 26(4):239-257.
14.Igney FH, Krammer PH: Death and anti-death: tumour resistance to apoptosis. Nature reviews Cancer 2002, 2(4):277-288.
15.Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G: Mechanisms of cytochrome c release from mitochondria. Cell death and differentiation 2006, 13(9):1423-1433.
16.Schimmer AD: Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer research 2004, 64(20):7183-7190.
17.Cory S, Adams JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nature reviews Cancer 2002, 2(9):647-656.
18.Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ: Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996, 87(4):619-628.
19.Newmeyer DD, Bossy-Wetzel E, Kluck RM, Wolf BB, Beere HM, Green DR: Bcl-xL does not inhibit the function of Apaf-1. Cell death and differentiation 2000, 7(4):402-407.
20.Ashkenazi A, Dixit VM: Death receptors: signaling and modulation. Science 1998, 281(5381):1305-1308.
21.Rubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A, Rosenwald A, Climent J, Martinez JI, Schilhabel M et al: Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood 2005, 106(9):3214-3222.
22.Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. The EMBO journal 1995, 14(22):5579-5588.
23.Slee EA, Adrain C, Martin SJ: Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. The Journal of biological chemistry 2001, 276(10):7320-7326.
24.Mak TW, Yeh WC: Signaling for survival and apoptosis in the immune system. Arthritis research 2002, 4 Suppl 3:S243-252.
25.Brazil DP, Park J, Hemmings BA: PKB binding proteins. Getting in on the Akt. Cell 2002, 111(3):293-303.
26.Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature reviews Cancer 2002, 2(7):489-501.
27.Medema RH, Kops GJ, Bos JL, Burgering BM: AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000, 404(6779):782-787.
28.Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74(4):609-619.
29.Zhang HM, Yuan J, Cheung P, Chau D, Wong BW, McManus BM, Yang D: Gamma interferon-inducible protein 10 induces HeLa cell apoptosis through a p53-dependent pathway initiated by suppression of human papillomavirus type 18 E6 and E7 expression. Molecular and cellular biology 2005, 25(14):6247-6258.
30.Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes & development 1998, 12(22):3499-3511.
31.Liu P, Cheng H, Roberts TM, Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nature reviews Drug discovery 2009, 8(8):627-644.
32.Yang WL, Zhang X, Lin HK: Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 2010, 29(32):4493-4503.
33.Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG et al: The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 2009, 325(5944):1134-1138.
34.Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y et al: The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 2012, 149(5):1098-1111.
35.Gudkov AV, Gurova KV, Komarova EA: Inflammation and p53: A Tale of Two Stresses. Genes & cancer 2011, 2(4):503-516.
36.Charvet C, Alberti I, Luciano F, Jacquel A, Bernard A, Auberger P, Deckert M: Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene 2003, 22(29):4557-4568.
37.Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96(6):857-868.
38.Orrenius S, Gogvadze V, Zhivotovsky B: Mitochondrial oxidative stress: implications for cell death. Annual review of pharmacology and toxicology 2007, 47:143-183.
39.Cieslak D, Lazou A: Regulation of BAD protein by PKA, PKCdelta and phosphatases in adult rat cardiac myocytes subjected to oxidative stress. Molecules and cells 2007, 24(2):224-231.
40.Condorelli F, Salomoni P, Cotteret S, Cesi V, Srinivasula SM, Alnemri ES, Calabretta B: Caspase cleavage enhances the apoptosis-inducing effects of BAD. Molecular and cellular biology 2001, 21(9):3025-3036.
41.Malanga M, Althaus FR: The role of poly(ADP-ribose) in the DNA damage signaling network. Biochemistry and cell biology = Biochimie et biologie cellulaire 2005, 83(3):354-364.
42.Langelier MF, Planck JL, Roy S, Pascal JM: Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 2012, 336(6082):728-732.
43.Muthurajan UM, Hepler MR, Hieb AR, Clark NJ, Kramer M, Yao T, Luger K: Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proceedings of the National Academy of Sciences of the United States of America 2014, 111(35):12752-12757.
44.Wolf BB, Schuler M, Echeverri F, Green DR: Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. The Journal of biological chemistry 1999, 274(43):30651-30656.
45.Iwai K: Functions of Linear Ubiquitin Chains in the NF-kappaB Pathway : Linear Polyubiquitin in NF-kappaB Signaling. Sub-cellular biochemistry 2010, 54:100-106.
46.Chen ZJ: Ubiquitination in signaling to and activation of IKK. Immunological reviews 2012, 246(1):95-106.
47.Niu J, Shi Y, Xue J, Miao R, Huang S, Wang T, Wu J, Fu M, Wu ZH: USP10 inhibits genotoxic NF-kappaB activation by MCPIP1-facilitated deubiquitination of NEMO. The EMBO journal 2013, 32(24):3206-3219.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔