(44.192.112.123) 您好!臺灣時間:2021/02/28 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王怡涵
研究生(外文):Yi-Han Wang
論文名稱:狼尾草台畜二號對於巨噬細胞RAW 264.7的免疫調節活性
論文名稱(外文):Immunomodulatory activities of napiergrass Taishigrass No.2 (Pennisetum purpureum S.) in RAW 264.7 macrophages
指導教授:陳玉華陳玉華引用關係
口試委員:許青雲王靜瓊
口試日期:2015-07-08
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:保健營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:100
中文關鍵詞:狼尾草巨噬細胞LPS細菌內毒素免疫調節
外文關鍵詞:napiergrassmacrophageLPSimmunomodulatory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當身體受到外來物質感染(如細菌內毒素LPS)或組織受傷,將刺激巨噬細胞活化,並釋出免疫介質,如一氧化氮(NO, nitric oxide)、介白素-6 (IL-6, interleukin-6)、腫瘤壞死因子α (TNF-α, tumor necrosis factor alpha) 與基質金屬蛋白酶(MMPs, matrix metalloproteinases)等,幫助病原體的清除,並藉由免疫細胞的調控,維持免疫功能的平衡。坊間廣泛使用的狼尾草(Pennisetum purpureum S.)生機飲食,被宣稱具健康促進之免疫調節的作用,然而尚無科學之根據,因此本研究探討狼尾草台畜二號酒精或水萃取物對於RAW264.7巨噬細胞免疫調節的影響,以及對於LPS存在下抗發炎的影響。狼尾草台畜二號市售粉末,以99.8 %酒精或二次蒸餾水室溫萃取24小時後的萃取物,於LPS (100 ng/ml)存在或不存在下及狼尾草酒精萃取物(0.625, 1.25, 2.5 mg/ml)或水萃取物(5, 10, 20 mg/ml)處理RAW264.7巨噬細胞24小時後,收集培養基及細胞進行分析。結果顯示,酒精萃取物可增加MMP-9的活性,且可降低LPS所誘導的NO、IL-6、TNF-α生成,且伴隨著iNOS蛋白質、CD14 mRNA表現量的降低。然而對LPS所誘導的NF-κB DNA結合活性無影響。狼尾草水萃物內含nitrite,並可增加巨噬細胞IL-6、TNF-α的產生,然而對iNOS蛋白質表現量以及免疫相關基因iNOS、CD14、TLR4 mRNA無顯著影響,此外水萃物無法對LPS所誘導的NO、IL-6、TNF-α產生無顯著影響。總言之,狼尾草具調節免疫的能力,其中酒精萃取物可增加RAW 264.7巨噬細胞MMP-9活性,水萃物可增加IL-6、TNF-α的產生。同時酒精萃取物可降低LPS誘導RAW 264.7巨噬細胞的NO、IL-6、TNF-α、iNOS蛋白質與CD14 mRNA表現量,而具抗發炎作用。因此認為狼尾草之水萃物具有增加健康者的免疫能力之潛力;酒精萃取物則具有降低發炎者的發炎介質釋出之潛力。
Napiergrass Taishigrass No.2 (Pennisetum purpureum S.) is one of livestock forage species in Taiwan. Recently, napiergrass is considered as one of natural organic diet materials and used to consume for health promotion. However, the effects of napiergrass on health promotion has not been investigated. The aim of this study was to explore the effects of napiergrass Taishigrass No.2 on the modulation of immunity in RAW 264.7 macrophages and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages inflammation. Napiergrass Taishigrass No.2 freeze dry powder was bought from Baoyuan company (Taichung, Taiwan). Napiergrass Taishigrass No.2 was extracted by 99.8% ethanol or water in room temperature for 24 h and condensed for cell culture used. Cells were treated with in the presence or absence of LPS (100 ng/ml) and ethanol extracts of napiergrass (0, 0.625, 1.25, 2.5 mg/ml) or water extracts (0, 5, 10 20 mg/ml) for 24 h. Ethanol extracts of napiergrass increased MMP-9 activities and MMP-9 mRNA expression, but had no effect on MMP-2 activities, implying that napiergrass may have immunomodulatiotory effects. Ethanol extracts of napiergrass suppressed nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS) protein expression and CD14 mRNA expression in LPS-induced RAW 264.7 macrophages, implying that napiergrass may have anti-inflammation activities. However ethanol extracts of napiergrass couldn’t decrease LPS-induced NF-κB DNA binding activity in RAW 264.7 macrophages. In the presence or absence LPS-induced inflammation condition, water extracts of napiergrass increased NO concentration in a dose dependent manner. Under cell-free condition, water extracts of napiergrass showed similar NO results as cell condition. Water extracts had no effect to iNOS protein expression, MMP-9 activities, MMP-2 activities and inflammatory associated mRNA expression. However water of napiergrass extracts increased IL-6 and IL-6 production in RAW 264.7 macrophages. Overall, the results obtained showed that napiergrass have immunomodulatiotory effects by increasing MMP-9 activities, IL-6 and TNF-α production on RAW 264.7 macrophages.
目錄
摘要 I
Abstact III
致謝 IV
目錄 VI
圖目次 VIII
表目次 IX
第一章 緒論 1
第二章 文獻回顧 2
第一節 免疫防禦系統 2
第二節 巨噬細胞與免疫調控 6
第三節 Lipopolysaccharide (LPS)刺激巨噬細胞之發炎反應 10
第四節 免疫介質 14
4-1. 細胞激素 14
4-2. iNOS與NO 15
4-3. Matrix metalloproteinases (MMPs)基質金屬蛋白酶 19
第五節 免疫與疾病 21
第六節 免疫與飲食 23
第七節 狼尾草 25
第三章 研究目的 26
第四章 材料方法 27
第一節 試劑 27
第二節 儀器 30
第三節 狼尾草台畜二號樣本配製 31
第四節 細胞培養 32
第五節 實驗流程 32
第六節 分析項目 34
6-1. 狼尾草酒精萃取物葉綠素a及b含量測定 34
6-2. 狼尾草酒精與水萃取物酚類化合物coumaric acid含量測定 35
6-3. 細胞存活率 36
6-4. 一氧化氮(NO)濃度 37
6-5. 細胞激素IL-6、TNF-α濃度 38
6-6. 基質金屬蛋白酶MMP-9、MMP-2活性 39
6-7. 西方墨點法 40
6-8. Real-time polymerase chain reaction (RT-PCR)分析 42
6-9. NF-κB DNA結合活性 45
第七節 統計方法 46
第五章 結果 47
第一節 狼尾草萃取物之葉綠素a、b及coumaric acid的含量 47
第二節 狼尾草酒精萃取物對細胞存活率的影響 50
第三節 狼尾草酒精萃取物對細胞NO生成的影響 52
第四節 狼尾草酒精萃取物對細胞iNOS蛋白質及mRNA表現量的
影響 54
第五節 狼尾草酒精萃取物對細胞IL-6與TNF-α生成影響 56
第六節 狼尾草酒精萃取物對細胞MMP-9、MMP-2活性與MMP-9
mRNA表現量的影響 58
第七節 狼尾草酒精萃取物對細胞CD14與TLR4 mRNA表現量的
影響 61
第八節 狼尾草酒精萃取物對細胞之NF-κB DNA結合活性的影響 63
第九節 狼尾草水萃取物對細胞存活率的影響 65
第十節 狼尾草水萃取物對細胞NO生成的影響 67
第十一節 狼尾草水萃取物對細胞iNOS蛋白質及mRNA表現量的
影響 69
第十二節 狼尾草水萃取物對細胞IL-6與TNF-α生成影響 71
第十三節 狼尾草水萃取物對細胞MMP-9、MMP-2活性與MMP-9
mRNA表現量的影響 75
第十四節 狼尾草水萃取物對細胞CD14與TLR4 mRNA表現量影響 78
第六章 討論 80
第一節 狼尾草酒精萃取物降低發炎可能之活性成 80
第二節 狼尾草酒精萃取物對MMP的影響可能之原因 84
第三節 狼尾草酒精萃取物對免疫介質影響的可能機制 85
第四節 狼尾草水萃取物對巨噬細胞NO影響的可能之原因 87
第五節 狼尾草水萃取物對巨噬細胞IL-6、TNF-α的影響及機制 89
第六節 狼尾草中之硝酸鹽 90
第七節 狼尾草與生機飲食 91
第七章 結論 92
第八章 參考文獻 93

圖目次
圖一、先天性及後天性免疫系統 4
圖二、巨噬細胞的分化、分布及活化 8
圖三、巨噬細胞對於發炎與傷口癒合的調節 9
圖四、革蘭氏陰性菌之LPS脂多醣 12
圖五、Lipopolysaccharide (LPS)誘導巨噬細胞發炎之訊號傳遞路徑 13
圖六、Nitric oxide (NO)的生成 17
圖七、促發炎細胞激素與一氧化氮產生的關係 18
圖八、實驗流程圖 33
圖九、Coumaric acid之酒精及水溶液的標準曲線 48
圖十、狼尾草酒精萃取物對RAW 264.7細胞存活率的影響 51
圖十一、狼尾草酒精萃取物對RAW 264.7細胞NO生成的影響 53
圖十二、狼尾草酒精萃取物對RAW 264.7細胞iNOS蛋白質(A)及mRNA (B)表現量的影響 55
圖十三、狼尾草酒精萃取物對RAW 264.7細胞IL-6 (A)、TNF-α (B)生成的影響 57
圖十四、狼尾草酒精萃取物對RAW 264.7細胞MMP-9、MMP-2活性影響 59
圖十五、狼尾草酒精萃取物對RAW 264.7細胞MMP-9 mRNA表現量活性的影響 60
圖十六、狼尾草酒精萃取物對RAW 264.7細胞CD14 (A)、TLR4 (B) mRNA表現量的影響 62
圖十七、狼尾草酒精萃取物對RAW 264.7細胞之NF-κB DNA結合活性的影響 64
圖十八、狼尾草水萃取物對RAW 264.7細胞存活率的影響 66
圖十九、狼尾草水萃取物對RAW 264.7細胞(A)或不含細胞狀況下(B) NO的影響 68
圖二十、狼尾草水萃取物對RAW 264.7細胞iNOS蛋白質及iNOS mRNA表現量的影響 70
圖二十一、狼尾草水萃取物對RAW 264.7細胞IL-6、TNF-α生成的影響 73
圖二十二、狼尾草水萃取物與含等量的NaNO2對IL-6 (A)與TNF-α (B)的影響 74
圖二十三、狼尾草水萃取物對RAW 264.7細胞MMP-9、MMP-2活性影響 76
圖二十四、狼尾草水萃取物對RAW 264.7細胞MMP-9 mRNA表現量影響 77
圖二十五、狼尾草水萃取物對RAW 264.7細胞CD14、TLR4 mRNA表現量的影響 79

表目次
表一、免疫細胞上主要辨識的接受器以及其對應的配體 5
表二、引子序列 44
表三、狼尾草酒精及水萃取物葉綠素a、b及coumaric acid的含量 49
Aderem, A., and Ulevitch, R.J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.

An, S.M., Lee, S.I., Choi, S.W., Moon, S.W., and Boo, Y.C. (2008). p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone. Br J Dermatol 159: 292-299.

Baldwin, A.S., Jr. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649-683.

Barthelmebs, L., Divies, C., and Cavin, J.F. (2000). Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol 66: 3368-3375.

Beutler, B., and Rietschel, E.T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3: 169-176.

Bhattacharyya, M., Girish, G.V., Karmohapatra, S.K., Samad, S.A., and Sinha, A.K. (2007). Systemic production of IFN-alpha by garlic (Allium sativum) in humans. J Interferon Cytokine Res 27: 377-382.

Birkedal-Hansen, H., and Taylor, R.E. (1982). Detergent-activation of latent collagenase and resolution of its component molecules. Biochem Biophys Res Commun 107: 1173-1178.

Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D.A., and Stella, A.M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8: 766-775.

Choi, H.J., Chung, T.W., Kim, J.E., Jeong, H.S., Joo, M., Cha, J., Kim, C.H., and Ha, K.T. (2012). Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysachride-induced RAW264.7 cells. Int Immunopharmacol 14: 267-274.

Clark, R., and Kupper, T. (2005). Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125: 629-637.

Cohen, J. (2002). The immunopathogenesis of sepsis. Nature 420: 885-891.

Coleman, J.W. (2001). Nitric oxide in immunity and inflammation. Int Immunopharmacol 1: 1397-1406.

Collart, M.A., Baeuerle, P., and Vassalli, P. (1990). Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 10: 1498-1506.

Croen, K.D. (1993). Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91: 2446-2452.

Davila, D.R., Edwards, C.K., 3rd, Arkins, S., Simon, J., and Kelley, K.W. (1990). Interferon-gamma-induced priming for secretion of superoxide anion and tumor necrosis factor-alpha declines in macrophages from aged rats. FASEB J. 4: 2906-2911.

de Souza, J., Batistel, F., Welter, K.C., Silva, M.M., Costa, D.F., and Portela Santos, F.A. (2015). Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Trop Anim Health Prod 47: 265-268.

De Stefano, D., Maiuri, M.C., Simeon, V., Grassia, G., Soscia, A., Cinelli, M.P., and Carnuccio, R. (2007). Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 566: 192-199.

Dempsey, P.W., Vaidya, S.A., and Cheng, G. (2003). The art of war: Innate and adaptive immune responses. Cell Mol Life Sci 60: 2604-2621.

Derin, D., Soydinc, H.O., Guney, N., Tas, F., Camlica, H., Duranyildiz, D., Yasasever, V., and Topuz, E. (2008). Serum levels of apoptosis biomarkers, survivin and TNF-alpha in nonsmall cell lung cancer. Lung Cancer 59: 240-245.

Dong, J., Zhang, X., Zhang, L., Bian, H.X., Xu, N., Bao, B., and Liu, J. (2014). Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKalpha1/SIRT1. J Lipid Res 55: 363-374.

Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4: 11-22.

Dunkelberger, J.R., and Song, W.C. (2010). Complement and its role in innate and adaptive immune responses. Cell Res 20: 34-50.

European Commission (1997). Food Science and Techniques. Reports of the Scientific Committee for Food (thirty eighth series) opinions of the scientific committee for food on: nitrates and nitrite, Luxembourg.

European Community (2011). European Commission Regulation (EC) No. 1258/2011. Official Journal of the European Communities L 320/15.

Ferrarese, C., Mascarucci, P., Zoia, C., Cavarretta, R., Frigo, M., Begni, B., Sarinella, F., Frattola, L., and De Simoni, M.G. (1999). Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 19: 1004-1009.

Fonseca, S.G., Romao, P.R., Figueiredo, F., Morais, R.H., Lima, H.C., Ferreira, S.H., and Cunha, F.Q. (2003). TNF-alpha mediates the induction of nitric oxide synthase in macrophages but not in neutrophils in experimental cutaneous leishmaniasis. Eur J Immunol 33: 2297-2306.

Forstermann, U., and Sessa, W.C. (2012). Nitric oxide synthases: regulation and function. Eur Heart J 33: 829-837, 837a-837d.


Friedl, R., Moeslinger, T., Kopp, B., and Spieckermann, P.G. (2001). Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br J Pharmacol 134: 1663-1670.

Gao, M., Ma, Y., and Liu, D. (2013). Rutin suppresses palmitic acids-triggered inflammation in macrophages and blocks high fat diet-induced obesity and fatty liver in mice. Pharm Res 30: 2940-2950.

Gon, Y., Hashimoto, S., Hayashi, S., Koura, T., Matsumoto, K., and Horie, T. (1996). Lower serum concentrations of cytokines in elderly patients with pneumonia and the impaired production of cytokines by peripheral blood monocytes in the elderly. Clin Exp Immunol 106: 120-126.

Gordon, S. (2003). Alternative activation of macrophages. Nat Rev Immunol 3: 23-35.
Gotsman, I., Stabholz, A., Planer, D., Pugatsch, T., Lapidus, L., Novikov, Y., Masrawa, S., Soskolne, A., and Lotan, C. (2008). Serum cytokine tumor necrosis factor-alpha and interleukin-6 associated with the severity of coronary artery disease: indicators of an active inflammatory burden? Isr Med Assoc J 10: 494-498.

Grandvaux, N., Servant, M.J., tenOever, B., Sen, G.C., Balachandran, S., Barber, G.N., Lin, R., and Hiscott, J. (2002). Transcriptional Profiling of Interferon Regulatory Factor 3 Target Genes: Direct Involvement in the Regulation of Interferon-Stimulated Genes. J Virol 76: 5532-5539.

Guerrero, A.R., Uchida, K., Nakajima, H., Watanabe, S., Nakamura, M., Johnson, W.E., and Baba, H. (2012). Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9: 40.

Guo, J., and Friedman, S.L. (2010). Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 3: 21.

Hambleton, J., Weinstein, S.L., Lem, L., and DeFranco, A.L. (1996). Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci USA 93: 2774-2778.

Haqqi, T.M., Anthony, D.D., Gupta, S., Ahmad, N., Lee, M.S., Kumar, G.K., and Mukhtar, H. (1999). Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci USA 96: 4524-4529.

Heo, S.H., Cho, C.H., Kim, H.O., Jo, Y.H., Yoon, K.S., Lee, J.H., Park, J.C., Park, K.C., Ahn, T.B., Chung, K.C., et al. (2011). Plaque Rupture is a Determinant of Vascular Events in Carotid Artery Atherosclerotic Disease: Involvement of Matrix Metalloproteinases 2 and 9. J Clin Neurol 7: 69-76.

Hughes, J.E., Srinivasan, S., Lynch, K.R., Proia, R.L., Ferdek, P., and Hedrick, C.C. (2008). Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102: 950-958.


Kabir, S., and Daar, G.A. (1995). Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-alpha in patients with gastric carcinoma. Cancer Lett 95: 207-212.

Koike, E., Kobayashi, T., Mochitate, K., and Murakami, M. (1999). Effect of aging on nitric oxide production by rat alveolar macrophages. Exp Gerontol 34: 889-894.

Kozlowski, L., Zakrzewska, I., Tokajuk, P., and Wojtukiewicz, M.Z. (2003). Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. Rocz Akad Med Bialymst 48: 82-84.

Lech-Maranda, E., Bienvenu, J., Broussais-Guillaumot, F., Warzocha, K., Michallet, A.S., Robak, T., Coiffier, B., and Salles, G. (2010). Plasma TNF-alpha and IL-10 level-based prognostic model predicts outcome of patients with diffuse large B-Cell lymphoma in different risk groups defined by the International Prognostic Index. Arch Immunol Ther Exp (Warsz) 58: 131-141.

Lee, S.-J., Lee, S.Y., Ha, H.J., Cha, S.H., Lee, S.K., and Hur, S.J. (2015). Rutin Attenuates Lipopolysaccharide-induced Nitric Oxide Production in Macrophage Cells. J Food Nutr Res 3: 202-205.

Lin, M.W., Tsao, L.T., Chang, L.C., Chen, Y.L., Huang, L.J., Kuo, S.C., Tzeng, C.C., Lee, M.R., and Wang, J.P. (2007). Inhibition of lipopolysaccharide-stimulated NO production by a novel synthetic compound CYL-4d in RAW 264.7 macrophages involving the blockade of MEK4/JNK/AP-1 pathway. Biochem Pharmacol 73: 1796-1806.

Linker-Israeli, M., Deans, R.J., Wallace, D.J., Prehn, J., Ozeri-Chen, T., and Klinenberg, J.R. (1991). Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol 147: 117-123.

Lo, H.M., Chen, C.L., Yang, C.M., Wu, P.H., Tsou, C.J., Chiang, K.W., and Wu, W.B. (2013). The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARbeta activation in murine macrophages. J Leukoc Biol 93: 723-735.

Loffek, S., Schilling, O., and Franzke, C.W. (2011). Series "matrix metalloproteinases in lung health and disease": Biological role of matrix metalloproteinases: a critical balance. Eur Respir J 38: 191-208.

MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu Rev Immunol 15: 323-350.

Martin, F., Santolaria, F., Batista, N., Milena, A., Gonzalez-Reimers, E., Brito, M.J., and Oramas, J. (1999). Cytokine levels (IL-6 and IFN-gamma), acute phase response and nutritional status as prognostic factors in lung cancer. Cytokine 11: 80-86.

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454: 428-435.

Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958-969.

Mueller, M., Hobiger, S., and Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem 122: 987-996.

Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11: 723-737.

Nacinovic-Duletic, A., Stifter, S., Dvornik, S., Skunca, Z., and Jonjic, N. (2008). Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathological features and prognosis in patients with diffuse large B-cell lymphoma. Int J Lab Hematol 30: 230-239.

Newby, A.C. (2005). Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85: 1-31.

Nikiteas, N.I., Tzanakis, N., Gazouli, M., Rallis, G., Daniilidis, K., Theodoropoulos, G., Kostakis, A., and Peros, G. (2005). Serum IL-6, TNFalpha and CRP levels in Greek colorectal cancer patients: prognostic implications. World J Gastroenterol 11: 1639-1643.

Ogiwara, T., Satoh, K., Negoro, T., Okayasu, H., Sakagami, H., and Fujisawa, S. (2003). Inhibition of NO production by activated macrophages by phenolcarboxylic acid monomers and polymers with radical scavenging activity. Anticancer Res 23: 1317-1323.

Opal, S.M., and DePalo, V.A. (2000). Anti-inflammatory cytokines. Chest 117: 1162-1172.

O’Sullivan A.M., O’Callaghan Y.C., O’Connor T.P., O’Brien N.M. (2011). The content and bioaccessibility of carotenoids from selected commercially available health supplements. Proceedings of the Nutrition Society, 70 (OCE3), E62

Oviedo-Orta, E., Bermudez-Fajardo, A., Karanam, S., Benbow, U., and Newby, A.C. (2008). Comparison of MMP-2 and MMP-9 secretion from T helper 0, 1 and 2 lymphocytes alone and in coculture with macrophages. Immunology 124: 42-50.

Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric Oxide and Peroxynitrite in Health and Disease. Physiol Rev 87: 315-424.

Park J.Y., Pillinger M.H., Abramson S.B. (2006) The protective effect of chlorophyll a against oxidative stress and inflammatory processes in LPS-stimulated macrophages. Food Sci Biotechnol 16: 205-211.

Parks, W.C., Wilson, C.L., and Lopez-Boado, Y.S. (2004). Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4: 617-629.

Philip, S., Bulbule, A., and Kundu, G.C. (2004). Matrix metalloproteinase-2: mechanism and regulation of NF-kappaB-mediated activation and its role in cell motility and ECM-invasion. Glycoconj J 21: 429-441.

Pragasam, S.J., Venkatesan, V., and Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36: 169-176.


Privat, C., Lantoine, F., Bedioui, F., Millanvoye van Brussel, E., Devynck, J., and Devynck, M.A. (1997). Nitric oxide production by endothelial cells: comparison of three methods of quantification. Life Sci 61: 1193-1202.

Qureshi, A.A., Guan, X.Q., Reis, J.C., Papasian, C.J., Jabre, S., Morrison, D.C., and Qureshi, N. (2012). Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis 11: 76.

Rahman, M.M., Abdullah, R.B., Wan Embong, W.K., Nakagawa, T., and Akashi, R. (2013). Effect of palm kernel cake as protein source in a concentrate diet on intake, digestibility and live weight gain of goats fed Napier grass. Trop Anim Health Prod 45: 873-878.

Rhee, J.W., Lee, K.W., Kim, D., Lee, Y., Jeon, O.H., Kwon, H.J., and Kim, D.S. (2007). NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J Biochem Mol Biol 40: 88-94.

Ritchie, R.J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89: 27-41.

Rossiter, A., Safaeefar, P., Black, K., Maeda, K., Ang, M. (2009). Measurement of the solubility of sodium nitrate in mixed ethanol-water solvents, in ICMS Pty Ltd (ed), Burswood Entertainment Complex: Engineers Australia.

Scholl, A.L., Menegol, D., Pitarelo, A.P., Fontana, R.C., Filho, A.Z., Ramos, L.P., Dillon, A.J., and Camassola, M. (2015). Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresour Technol 192: 228-237.

Sharma, V. K., Tiwari, M., Chauhan, N. S., & Nema, R. K. (2012). Phytochemical investigation on the ethanolic extract on the leaves of Zizyphus xylopyrus (Retz.) Willd. Intl J Agron Plant Prod 3: 26-37.

Sheen-Chen, S.M., Chen, W.J., Eng, H.L., and Chou, F.F. (1997). Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Res Treat 43: 211-215.
Shrivastava, A.K., Singh, H.V., Raizada, A., Singh, S.K., Pandey, A., Singh, N., Yadav, D.S., and Sharma, H. (2015). Inflammatory markers in patients with rheumatoid arthritis. Allergologia et Immunopathologia 43: 81-87.

Souza, K.L., Gurgul-Convey, E., Elsner, M., and Lenzen, S. (2008). Interaction between pro-inflammatory and anti-inflammatory cytokines in insulin-producing cells. J Endocrinol 197: 139-150.

Subramoniam, A., Asha, V.V., Nair, S.A., Sasidharan, S.P., Sureshkumar, P.K., Rajendran, K.N., Karunagaran, D., and Ramalingam, K. (2012). Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-alpha gene by the same. Inflammation 35: 959-966.

Surendra, K.C., and Khanal, S.K. (2015). Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop. Bioresour Technol 178: 187-193.

Swift, M.E., Burns, A.L., Gray, K.L., and DiPietro, L.A. (2001). Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117: 1027-1035.

Takara, D., and Khanal, S.K. (2015). Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresour Technol 188: 103-108.

Thompson, W.W., Shay, D.K., Weintraub, E., Brammer, L., Cox, N., Anderson, L.J., and Fukuda, K. (2003). Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289: 179-186.

Tsai, P.-J., Wu, S.-C., and Cheng, Y.-K. (2008). Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons. Food Chem 106: 27-32.

Varilek, G.W., Yang, F., Lee, E.Y., deVilliers, W.J., Zhong, J., Oz, H.S., Westberry, K.F., and McClain, C.J. (2001). Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J Nutr 131: 2034-2039.

Wang, A., Al-Kuhlani, M., Johnston, S.C., Ojcius, D.M., Chou, J., and Dean, D. (2013). Transcription factor complex AP-1 mediates inflammation initiated by Chlamydia pneumoniae infection. Cell Microbiol 15: 779-794.

Wang, J.X., Hou, L.F., Yang, Y., Tang, W., Li, Y., and Zuo, J.P. (2009). SM905, an artemisinin derivative, inhibited NO and pro-inflammatory cytokine production by suppressing MAPK and NF-kappaB pathways in RAW 264.7 macrophages. Acta Pharmacol Sin 30: 1428-1435.

Wanjala, B.W., Obonyo, M., Wachira, F.N., Muchugi, A., Mulaa, M., Harvey, J., Skilton, R.A., Proud, J., and Hanson, J. (2013). Genetic diversity in Napier grass (Pennisetum purpureum) cultivars: implications for breeding and conservation. AoB Plants 5: plt022.

Weckerle, C.E., Mangale, D., Franek, B.S., Kelly, J.A., Kumabe, M., James, J.A., Moser, K.L., Harley, J.B., and Niewold, T.B. (2012). Large-scale analysis of tumor necrosis factor alpha levels in systemic lupus erythematosus. Arthritis Rheum 64: 2947-2952.

Welgus, H.G., Campbell, E.J., Cury, J.D., Eisen, A.Z., Senior, R.M., Wilhelm, S.M., and Goldberg, G.I. (1990). Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest 86: 1496-1502.

Yeo, S.J., Yoon, J.G., Hong, S.C., and Yi, A.K. (2003). CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in response to CpG DNA and lipopolysaccharide: alterations in IL-1 receptor-associated kinase expression. J Immunol 170: 1052-1061.

Yu, H.M., Wang, B.-S., Chu, H.L., Chang, L.-W., Yen, W.-J., Lin, C.-J., and Duh, P.-D. (2007). Napiergrass (Pennisetum purpureum S.) protects oxidative damage of biomolecules and modulates antioxidant enzyme activity. Food Chem 105: 1364-1374.

Zhang, J.M., and An, J. (2007). Cytokines, Inflammation and Pain. Int Anesthesiol Clin 45: 27-37.

行政院農業委員會(2009)
http://kmweb.coa.gov.tw/subject/ct.asp?xItem=212003&ctNode=6063&mp=322&kpi=0&hashid=

成游貴 (2006) 狼尾草育種與多元化利用。科學發展407: 24-29

盧啟信 (2009) 國產芻料硝酸態氮含量之研究。農政與農情210: 90-93
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔