(3.237.234.213) 您好!臺灣時間:2021/03/09 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭佳容
研究生(外文):Chia-Jung Hsiao
論文名稱:膜聯蛋白A2調控腎細胞癌腫瘤惡性特徵之角色探討
論文名稱(外文):The role of Annexin A2 in regulating multiple malignantphenotypes in renal cell carcinoma
指導教授:鄭朝文
指導教授(外文):Chao-Wen Cheng
口試委員:林景堉張哲菖趙載光
口試日期:2015-06-18
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:腎細胞癌、膜聯蛋白A2
外文關鍵詞:Renal cell carcinoma、Annexin A2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腎細胞癌是最致命的泌尿性生殖系統癌症,對於化學、放射與激素療法皆有抗性的產生。超過四分之一的患者在確診的同時已經有轉移的情形發生。一旦發生轉移,患者的五年存活率小於百分之十。在先前的實驗結果證明,膜聯蛋白A2 的表現隨著急性腎損傷發生到恢復過程中有所變化,顯示在恢復過程中膜聯蛋白A2 可能參與調節腎小管細胞的增殖和再生。因此,我們推測膜聯蛋白A2 失調可能導致腎細胞癌的產生。膜聯蛋白A2 是一種鈣依賴的磷脂結合蛋白,可以表現在不同型態的細胞。膜聯蛋白A2 表現量在許多腫瘤組織內有增加的情形,可能具有調節癌細胞功能的相關能力,包括血管生成,增殖,凋亡,細胞遷移,侵襲和黏附等。在腎細胞癌中膜聯蛋白A2 的表達與腫瘤分化程度和臨床療效有所關聯。然而,大部分的結果主要來自於在組織病理診斷上的分析,對於膜聯蛋白A2 如何調控在腎細胞癌行為的機轉仍不甚清楚。在此研究中,我們使用腎臟癌組織晶片的免疫組織化學染色和即時聚合酶鏈鎖反應來分析膜聯蛋白A2的表現量。膜聯蛋白A2 的表現在腎細胞癌臨床檢體上有明顯增加的情形,且高表現可以預測腎細胞癌不良預後的情形。因此,我們利用小髮夾型核醣核酸 (shRNA) 慢病毒系統來降低腎細胞癌細胞株的膜聯蛋白A2 基因表現,探討膜聯蛋白A2 在調控腎細胞癌腫瘤惡性特徵所扮演的角色和了解其相關的致病機轉。我們發現膜聯蛋白A2 的表現量降低時會抑制細胞移動和侵襲的能力,但對於細胞增殖的影響較小。降低膜聯蛋白A2的表達,會導致細胞極性的改變和破壞肌動蛋白絲的形成,以及降低的CXCR4表達。此外,膜聯蛋白A2 通過抑制Rho 相關的蛋白酶 (ROCK) 訊息傳遞提高細胞的運動能力,並調節肌動蛋白細胞骨架的動態重組。我們進一步研究膜聯蛋白 A2 在腎細胞癌化學療法抗性所扮演之角色,發現降低膜聯蛋白 A2 的表現,可能藉由抑制細胞自噬作用的調控,使腎癌細胞對於細胞分裂抑制劑 (vincristine) 產生抗藥性。總而言之,我們的研究結果表明腎細胞癌中膜聯蛋白A2 的表現量可以用來作為不良預後的標記,且可以調節細胞移動和化療抗藥性。膜聯蛋白A2 可能作為潛在的腎細胞癌治療標靶。
Renal cell carcinoma (RCC) is the most lethal of urologic malignancies and intrinsically resistant to chemotherapy, radiotherapy and hormone therapy. More than one fourth of
patients have metastasis at presentation. Once metastatic RCC occurs, the 5-year survival rate in metastatic patients is less than 10%. In our pervious study, we had identified Annexin A2 (ANXA2) has been modulated in a temporal pattern concomitant with the initiation and recovery of AKI, and concludes that ANXA2 may play a role in the regulation of renal tubular cell proliferation and regeneration in the recovery process. Therefore, we inferred that the dysregulation of ANXA2 might contribute to the progression of RCC. ANXA2 is a calciumdependent, phospholipid-binding protein found on various cell types. It is overexpression in various tumor types and plays multiple roles in regulating cellular functions, including angiogenesis, proliferation, apoptosis, cell migration, invasion and adhesion. ANXA2 expression was correlated with tumor differentiation and clinical outcome in RCC. However,most of studies have been performed only in histological analysis, and little is known about the subsequent effects of ANXA2 manipulation on RCC behaviors. In this study, we used commercial RCC tissue microarray arrays and quantitative polymerase chain reaction (qPCR) array were used to examine ANXA2 expression level by immunohistochemistry and real-time
polymerase chain reaction analysis. ANXA2 expression levels were increasing in RCC clinical specimens, and high expression might predict poor clinical outcome. Therefore, we used short hairpin RNA (shRNA) – based lentiviral system to evaluate the impact of ANXA2
in modulating the malignant phenotypes in RCC cell lines and further delineate the possible mechanisms in these regulations. Our data indicated that silencing ANXA2 expression presented higher suppression abilities of cell motility and invasion in RCC cells, but had less
effect on the ability of cell proliferation. Silencing ANXA2 expression caused the alterations of cell polarity and disrupted the formation of actin filaments and reduced CXCR4 expression. In addition, ANXA2 promotes RCC cell motility through inhibition of Rho-associated protein kinase (ROCK) signaling and regulates the dynamic reorganization of the actin cytoskeleton.
We further examined the role of ANXA2 for chemotherapy resistance in RCC, and found that
the silencing of ANXA2 increased resistance to cell division inhibitor by inhibiting autophagy
regulation. Overall, our findings indicated that evaluated ANXA2 expression represented a
poor prognosis marker in RCC and the regulatory function of ANXA2 in cell motility and chemoresistance. ANXA2 may be a potential therapeutic target for the treatment of RCC.
目錄 ....................................................................................................................................... I-II
中文摘要 ................................................................................................................................... 1
Abstract ................................................................................................................................. 2-3
1. 背景 ................................................................................................................................ 4-9
1.1 腎細胞癌 .................................................................................................................... 4
1.2 腎細胞癌和急性腎損傷(Acute Kidney Injury)的相關性 ................................... 6
1.3 膜聯蛋白A2 .............................................................................................................. 7
1.4 膜聯蛋白A2 和腎細胞癌的關係 ............................................................................. 9
2. 實驗材料與方法 ......................................................................................................... 10-14
2.1 組織晶片和免疫組織化學染色分析 ...................................................................... 10
2.2 細胞株和培養 .......................................................................................................... 10
2.3 流式細胞技術 .......................................................................................................... 11
2.4 細胞增殖分析 .......................................................................................................... 11
2.5 反轉錄聚合連鎖反應 .............................................................................................. 11
2.6 西方墨點法分析 ...................................................................................................... 12
2.7 傷口癒合分析 .......................................................................................................... 12
2.8 細胞侵襲分析 .......................................................................................................... 12
II
2.9 G-/F- actin (球狀/絲狀肌動蛋白) 比例分析 ......................................................... 13
2.10 抑制腎癌細胞Rho 家族的訊息傳遞 ..................................................................... 13
2.11 腎癌細胞藥物處理 .................................................................................................. 14
2.12 統計分析 .................................................................................................................. 14
3. 結果 ............................................................................................................................. 15-18
3.1 膜聯蛋白A2 在腎細胞癌的表現量增加並影響腎細胞癌的預後 ....................... 15
3.2 建立膜聯蛋白A2 靜默的腎細胞癌細胞株 ........................................................... 16
3.3 膜聯蛋白A2 基因表現量下調會抑制腎細胞癌的細胞移動性 ........................... 16
3.4 靜默膜聯蛋白A2 的表現改變腎細胞癌細胞極性和干擾絲狀肌動蛋白的形成 ...
................................................................................................................................. 16
3.5 膜聯蛋白A2 經由抑制Rho 訊息傳遞來促進腎細胞癌的的細胞運動性 .......... 17
3.6 膜聯蛋白A2 基因下調會抑制CXCR4 的表現 .................................................... 17
3.7 膜聯蛋白 A2 的表現影響細胞分裂抑制劑對於腎細胞癌之療效 ...................... 17
3.8 靜默膜聯蛋白 A2 的表現對於腎細胞癌化學和標靶藥物療法療效的影響 ...... 18
4. 討論 ............................................................................................................................. 19-22
5. 結論與展望 ...................................................................................................................... 23
6. 參考文獻 ..................................................................................................................... 24-27
7. 圖表 ............................................................................................................................. 28-50
8. 附錄 ............................................................................................................................. 51-56
1. Jemal, A., et al., Cancer statistics, 2010. CA Cancer J Clin, 2010. 60(5): p. 277-300.
2. Gupta, K., et al., Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev, 2008. 34(3): p. 193-205.
3. Lopez-Beltran, A., et al., 2009 update on the classification of renal epithelial tumors in adults. International Journal of Urology, 2009. 16(5): p. 432-443.
4. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int J Cancer, 2010. 127(12): p. 2893-917.
5. Arai, E. and Y. Kanai, Genetic and epigenetic alterations during renal carcinogenesis.Int J Clin Exp Pathol, 2010. 4(1): p. 58-73.
6. Latif, F., et al., Identification of the von Hippel-Lindau disease tumor suppressor gene.
Science, 1993. 260(5112): p. 1317-20.
7. Patel, P.H., et al., Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin
Cancer Res, 2006. 12(24): p. 7215-20.
8. Ikemoto, S., et al., Comparative antitumor activity of 5-fluorouracil and 5''-deoxy-5-fluorouridine in combination with interferon-alpha in renal cell carcinoma
cell lines. Urol Int, 2004. 73(4): p. 348-353.
9. Lin, J.A., et al., Silencing glucose-regulated protein 78 induced renal cell carcinoma cell line G1 cell-cycle arrest and resistance to conventional chemotherapy. Urologic Oncology-Seminars and Original Investigations, 2014. 32(1).
10. Coppin, C., et al., Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev, 2005(1): p. CD001425.
11. Courtney, K.D. and T.K. Choueiri, Optimizing recent advances in metastatic renal cell carcinoma. Curr Oncol Rep, 2009. 11(3): p. 218-26.
12. Fishman, M., et al., Paradigm towards Tailored Therapies and Complete Responses in the Treatment of Metastatic Renal Cell Carcinoma. Oncology & Hematology Review,2012. 8(1): p. 30-38.
13. Hutson, T.E., Targeted therapies for the treatment of metastatic renal cell carcinoma:clinical evidence. Oncologist, 2011. 16 Suppl 2: p. 14-22.
14. Gibney, G.T., et al., c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Annals of Oncology, 2013. 24(2): p. 343-349.
15. Thadhani, R., M. Pascual, and J.V. Bonventre, Acute renal failure. N Engl J Med, 1996.334(22): p. 1448-60.
16. Riss, J., et al., Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res, 2006. 66(14):p. 7216-24.
17. Cheng, C.W., et al., Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure. Kidney Int, 2005. 68(6): p.2694-703.
18. Mohammad, H.S., et al., Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int J Oncol, 2008. 33(6): p. 1157-63.
19. Waisman, D.M., Annexin II tetramer: structure and function. Mol Cell Biochem, 1995.149-150: p. 301-22.
20. Menell, J.S., et al., Annexin II and bleeding in acute promyelocytic leukemia. N Engl J
Med, 1999. 340(13): p. 994-1004.
21. Bharadwaj, A., et al., Annexin A2 heterotetramer: structure and function. Int J Mol Sci,2013. 14(3): p. 6259-305.
22. Lizarbe, M.A., et al., Annexin-phospholipid interactions. Functional implications. IntJ Mol Sci, 2013. 14(2): p. 2652-83.
23. Gerke, V., C.E. Creutz, and S.E. Moss, Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol, 2005. 6(6): p. 449-61.
24. Mayran, N., R.G. Parton, and J. Gruenberg, Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J, 2003.22(13): p. 3242-53.
25. Lokman, N.A., et al., The role of annexin A2 in tumorigenesis and cancer progression.Cancer Microenviron, 2011. 4(2): p. 199-208.
26. Mussunoor, S. and G.I. Murray, The role of annexins in tumour development and progression. J Pathol, 2008. 216(2): p. 131-40.
27. Ohno, Y., et al., Annexin II represents metastatic potential in clear-cell renal cell carcinoma. Br J Cancer, 2009. 101(2): p. 287-94.
28. Zimmermann, U., et al., Expression of annexin II in conventional renal cell carcinoma is correlated with Fuhrman grade and clinical outcome. Virchows Archiv, 2004.445(4): p. 368-374.
29. Raftopoulou, M. and A. Hall, Cell migration: Rho GTPases lead the way. Dev Biol,2004. 265(1): p. 23-32.
30. Jung, Y., et al., Annexin-2 is a regulator of stromal cell-derived factor-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol, 2011. 39(2): p.151-166 e1.
31. Domoto, T., et al., Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci, 2007. 98(1): p. 77-82.
32. Wu, B., et al., Up-regulation of Anxa2 gene promotes proliferation and invasion of breast cancer MCF-7 cells. Cell Prolif, 2012. 45(3): p. 189-98.
33. Wang, C.Y., et al., Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem, 2012.
287(39): p. 32512-24.
34. Sun, M.Y., et al., ANXA2 regulates the behavior of SGC-7901 cells. Asian Pac J Cancer Prev, 2013. 14(10): p. 6007-12.
35. Dong, Z., et al., Inhibition of Annexin A2 gene transcription is a promising molecular target for hepatoma cell proliferation and metastasis. Oncol Lett, 2014. 7(1): p. 28-34.
36. Chiang, Y., M.H. Schneiderman, and J.K. Vishwanatha, Annexin II expression is regulated during mammalian cell cycle. Cancer Res, 1993. 53(24): p. 6017-21.
37. Bao, H., et al., Overexpression of Annexin II affects the proliferation, apoptosis,invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol,
2009. 90(2): p. 177-85.
38. Chiang, Y., et al., Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol Cell Biochem, 1999. 199(1-2): p. 139-47.
39. Zhai, H., et al., Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci, 2011. 31(40): p. 14346-60.
40. Zhang, H.J., et al., Annexin A2 silencing inhibits invasion, migration, and tumorigenic potential of hepatoma cells. World J Gastroenterol, 2013. 19(24): p. 3792-801.
41. Zheng, L., et al., Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS One,2011. 6(4): p. e19390.
42. Sharma, M.R., et al., Angiogenesis-associated protein annexin II in breast cancer:selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol, 2006. 81(2): p. 146-56.
43. Zhao, P., et al., Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci, 2010.101(2): p. 387-95.
44. Myrvang, H.K., et al., Protein interactions between surface annexin A2 and S100A10 mediate adhesion of breast cancer cells to microvascular endothelial cells. Febs
Letters, 2013. 587(19): p. 3210-3215.
45. Babiychuk, E.B. and A. Draeger, Annexins in cell membrane dynamics.Ca(2+)-regulated association of lipid microdomains. J Cell Biol, 2000. 150(5): p.1113-24.
46. Rescher, U., et al., Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. J Cell Sci, 2008. 121(Pt 13): p. 2177-85.
47. Babbin, B.A., et al., Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling. Am J Pathol, 2007. 170(3): p. 951-66.
48. Bachelder, R.E., M.A. Wendt, and A.M. Mercurio, Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res, 2002. 62(24): p. 7203-6.
49. Sun, Y.X., et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003. 89(3): p. 462-73.
50. Liekens, S., D. Schols, and S. Hatse, CXCL12-CXCR4 axis in angiogenesis,metastasis and stem cell mobilization. Curr Pharm Des, 2010. 16(35): p. 3903-20.
51. Staller, P., et al., Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 2003. 425(6955): p. 307-11.
52. Pan, J., et al., Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer, 2006. 5: p. 56.
53. Wehler, T.C., et al., Strong expression of chemokine receptor CXCR4 by renal cell carcinoma correlates with advanced disease. J Oncol, 2008. 2008: p. 626340.
54. Nagle, A., W. Hur, and N.S. Gray, Antimitotic agents of natural origin. Curr Drug Targets, 2006. 7(3): p. 305-
55. Amin, A., et al., Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci, 2009. 5(1): p. 1-11.
56. Huang, F.Y., et al., The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur J Cancer, 2012. 48(14): p. 2260-9.
57. Rubtsova, S.N., et al., Disruption of actin microfilaments by cytochalasin D leads to activation of p53. FEBS Lett, 1998. 430(3): p. 353-7.
58. Rini, B.I., Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res, 2008. 14(5): p. 1286-90.
59. Sauerbruch, T., A.M. Gonzalez-Carmona, and S. Nitschmann, [Sorafenib in advanced hepatocellular carcinoma]. Internist (Berl), 2009. 50(11): p. 1290-2.
60. Wyatt, M.D. and D.M. Wilson, 3rd, Participation of DNA repair in the response to 5-fluorouracil. Cell Mol Life Sci, 2009. 66(5): p. 788-99.
61. Bodley, A., et al., DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res, 1989. 49(21): p. 5969-78.
62. Prewitt, T.W., et al., Tumor necrosis factor induces doxorubicin resistance to lung cancer cells in vitro. J Thorac Cardiovasc Surg, 1994. 107(1): p. 43-9.
63. Westmoreland, T.J., et al., Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in Saccharomyces cerevisiae. PLoS One, 2009. 4(6): p. e5830.
64. Tsang, W.P., et al., Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci, 2003. 73(16): p. 2047-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔