(3.239.33.139) 您好!臺灣時間:2021/03/02 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張景欣
研究生(外文):Ching-Hsin Chang
論文名稱:膀胱內化療藥物灌注治療膀胱泌尿上皮惡性腫瘤之新策略:電漿制動活化水之細胞安全性試驗與動物實驗模式建立
論文名稱(外文):The new strategy for the intravesical chemotherapy in urinary bladder urothelial carcinoma: The safety evaluation of plasmon-induced activated water and the establishment of animal model
指導教授:麥富德麥富德引用關係
指導教授(外文):Fu-Der Mai
口試委員:王勝盟劉豫川
口試委員(外文):Sheng-Meng WangYu-Chuan Liu
口試日期:2015-07-06
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:50
中文關鍵詞:膀胱癌膀胱灌注原位膀胱腫瘤電漿制動活化水泌尿上皮惡性腫瘤
外文關鍵詞:bladder cancerintravesical instillationorthotopic bladder tumorplasmon-induced activated waterurothelial carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
泌尿上皮惡性腫瘤(Urothelial carcinoma)是泌尿系統中最常見的惡性腫瘤;凡是泌尿上皮覆蓋的器官(如腎盂,輸尿管,膀胱,尿道),皆有可能化生此惡性腫瘤。其中約70%是源自於膀胱,並且大多數屬於非肌肉侵犯型。
對於非肌肉侵犯型的膀胱腫瘤,經尿道內視鏡手術刮除膀胱腫瘤,是目前的標準治療方式。手術後,仍需配合完整的膀胱內化學治療藥物灌注,才能夠減少癌症復發的機率。但這樣的治療步驟需延續數個月,可能會引起病患不適症狀,例如頻尿,血尿,泌尿道感染等。目前相關的研究大多討論改變灌注藥物的成分來減少此併發症狀的發生,較少有文獻著墨於藥物灌注的溶質對療程的影響。
利用黃金奈米粒子 (Au nanoparticles)與水流的交互作用改變水分子的鍵結,所產生之「電漿制動活化水」(Plasmon-induced activated water,PIAW),具有減少發炎反應與增加鹽類溶解度之特性。因此本研究利用電漿制動活化水作為溶劑,試圖改變膀胱內化學治療藥物灌注之程序。
藉由體外細胞存活與毒殺試驗,將三種化療藥物分別溶解於電漿制動活化水與去離子水中,比較其兩者所產生之細胞抑制效果,但結果未達統計上顯著差異。此外,作者嘗試建立小鼠動物實驗模型,包含皮下腫瘤模式與原位膀胱腫瘤模式,作為後續研究之平台。後者的操作步驟包含:化學性或物理性破壞小鼠膀胱上皮完整性,再以靜脈注射軟管導入小鼠尿道,藉此管路將腫瘤細胞注入膀胱並附著於上皮,數周後檢驗膀胱腫瘤是否形成。
本實驗以電漿制動活化水作為溶劑,嘗試改變膀胱內化學治療藥物灌注程序。在體外細胞存活與毒殺試驗結果中,電漿制動活化水與常規使用去離子水相比,在細胞安全性試驗表現相似。透過本研究所建立之小鼠動物實驗模型,期待後續研究可進行膀胱內化療藥物灌注之動物實驗,來評估電漿制動活化水是否能提升腫瘤抑制效果及其臨床應用之可能。
Urothelial carcinoma (UC) is the most common cancer of the urinary tract, and it originates in the urinary bladder generally. 70% of them are classified as nonmuscle invasive bladder cancer. The standard treatment for nonmuscle invasive bladder cancer is transurethral resection of bladder tumor, and followed with continuous intravesical instillations after the surgery. Applying intravesical instillation could lower the possibility of tumor recurrence.
The materials to be instilled in the protocol are various, including Bacillus Calmette-Guerin (BCG) and different kinds of chemotherapeutic agents. The instillations have to be scheduled, starting from weekly, and then monthly, prolonging till even one year after the surgery. The instillation process often causes the discomfort symptoms of the patient, including urinary frequency, dysuria, cystitis, urinary tract infection and hematuria. To prevent the side effects and increase the treatment efficacy, many researches of different regiments were reported.
In addition to changing the solute for instillation, the modification of solvent could be another direction to improve the treatment efficacy. Plasmon-induced activated water (PIAW) is produced by allowing bulk water flow through supported Au nanoparticles under resonant illumination. This kind of small water clusters has the characteristic of reduced affinity hydrogen bonds. Besides, compared with untreated water, PIAW shows better potential on anti-inflammatory in the previous hemodialysis studies.
In vitro, three kinds of chemotherapeutic agents, Doxorubicin, Epirubicin, and Mitomycin-C, were applied to compare the cytotoxicity effect between untreated water and PIAW. The three agents were dissolved into ordinary normal saline and PIAW separately. The result showed that these two solvents were estimated to have similar toxicity to the cancer cell lines. In addition, in vivo, the initial rodent models, including subcutaneous and orthotopic bladder tumor, were established. The procedure of the latter was: put intravenous catheter into the urethra of mice, use chemical agent to damage the mucosa of bladder, and inject the tumor cells into bladder which was attached to the mucosa.
In conclusion, using PIAW as solvent to dissolve chemotherapeutic agents for instillation showed non-inferior performance on the efficacy and safety during the in vitro study. Moreover, the mice model was established in this study and is suitable for further evaluation on PIAW’s clinical application.
1 中文摘要 1
2 Abstract 3
3 背景介紹 5
3.1 泌尿上皮惡性腫瘤 5
3.1.1 症狀 5
3.1.2 診斷方式 7
3.1.3 腫瘤分期(TNM staging ) 8
3.1.4 治療策略 8
3.2 膀胱內藥物灌注 9
3.3 電漿制動活化水(Plasmon-induced activated water) 10
3.4 膀胱惡性腫瘤細胞之動物實驗設計 11
4 材料與方法 13
4.1 配製藥物 13
4.2 培養細胞株 13
4.2.1 細胞株的培養 14
4.2.2 細胞繼代培養 14
4.2.3 細胞之冷凍保存 14
4.2.4 細胞計數 (Trypsin blue染色法) 15
4.3 飼養小鼠 16
4.4 細胞生長試驗 (Cell viability assay) 16
4.5 細胞毒殺試驗 (LDH Cytotoxicity Assay) 17
4.6 建立活體皮下腫瘤模型 18
4.7 建立活體原位膀胱腫瘤模型 18
5 結果 18
5.1 體外細胞試驗 18
5.2 活體膀胱腫瘤實驗 19
6 討論 20
6.1 膀胱惡性腫瘤具有台灣地區的特殊盛行率 20
6.2 泌尿上皮惡性腫瘤的研究需剔除其他泌尿系統之惡性腫瘤種類 21
6.3 體外細胞實驗之偏差原因 22
6.4 小鼠體內細胞實驗之偏差原因 23
6.5 影響建立小鼠原位膀胱腫瘤模式之因素 24
6.6 建立小鼠膀胱腫瘤的理想細胞株 25
7 結論 26
8 未來研究方向 27
8.1 更精細與準確的活體實驗 27
8.2 將活化水應用於人體(臨床使用) 27
8.3 展望 28
9 參考文獻 28
10 圖片 33
10.1 圖片一:泌尿上皮惡性腫瘤 33
10.2 圖片二:「電漿製動活化水」製備過程 35
10.3 圖片三:建立活體小鼠皮下腫瘤 36
10.4 圖片四:小鼠內膀胱插入注射軟針 37
10.5 圖片五:細胞生長試驗 38
10.6 圖片六:細胞毒殺試驗 40
10.7 圖片七:評估原位膀胱腫瘤建立之成果 41
10.8 圖片八: 以膀胱重量評估原位膀胱腫瘤模式 42
10.9 圖片九:以HeLa細胞株進行初步細胞生長試驗 43
10.10 圖片十:以HeLa細胞株進行初步細胞毒殺試驗 44
11 TABLES 45
11.1 Table 1. 小鼠膀胱原位腫瘤之文獻彙整 45
11.2 Table 2. 本研究體外部分,使用之細胞株 47
11.3 Table 3. 本實驗於小鼠體內部份使用之細胞株(MBT-2)相關資料 48
11.4 Table 4. 臨床上慣用之化療藥物 49
11.5 Table 5. 實驗小鼠死亡原因 50
1.Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet 2009;374:239-49.

2.Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA: a cancer journal for clinicians 2010;60:244-72.

3.Hall MC, Chang SS, Dalbagni G, et al. Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1, and Tis): 2007 update. The Journal of urology 2007;178:2314-30.

4.Karl A, Adejoro O, Saigal C, Konety B, Urologic Diseases in America P. General adherence to guideline recommendations on initial diagnosis of bladder cancer in the United States and influencing factors. Clin Genitourin Cancer 2014;12:270-7.

5.Chen CH, Yang HJ, Shun CT, et al. A cocktail regimen of intravesical mitomycin-C, doxorubicin, and cisplatin (MDP) for non-muscle-invasive bladder cancer. Urologic oncology 2012;30:421-7.

6.Jeong KC, Kim KT, Seo HH, et al. Intravesical instillation of c-MYC inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. The Journal of urology 2014;191:510-8.

7.Lu CC, Lin MY, Chen SY, et al. The investigation of a traditional Chinese medicine, Guizhi Fuling Wan (GFW) as an intravesical therapeutic agent for urothelial carcinoma of the bladder. BMC Complement Altern Med 2013;13:44.

8.Erdogar N, Iskit AB, Eroglu H, Sargon MF, Mungan NA, Bilensoy E. Cationic core-shell nanoparticles for intravesical chemotherapy in tumor-induced rat model: safety and efficacy. International journal of pharmaceutics 2014;471:1-9.

9.Neutsch L, Wambacher M, Wirth EM, et al. UPEC biomimickry at the urothelial barrier: lectin-functionalized PLGA microparticles for improved intravesical chemotherapy. International journal of pharmaceutics 2013;450:163-76.

10.Lu Z, Yeh TK, Wang J, et al. Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. The Journal of urology 2011;185:1478-83.

11.Maffezzini M, Campodonico F, Canepa G, Manuputty EE, Tamagno S, Puntoni M. Intravesical mitomycin C combined with local microwave hyperthermia in non-muscle-invasive bladder cancer with increased European Organization for Research and Treatment of Cancer (EORTC) score risk of recurrence and progression. Cancer chemotherapy and pharmacology 2014;73:925-30.

12.Paroni R, Salonia A, Lev A, et al. Effect of local hyperthermia of the bladder on mitomycin C pharmacokinetics during intravesical chemotherapy for the treatment of superficial transitional cell carcinoma. Br J Clin Pharmacol 2001;52:273-8.

13.Chen HC, Hwang BJ, Mai FD, et al. Active and stable liquid water innovatively prepared using resonantly illuminated gold nanoparticles. ACS nano 2014;8:2704-13.

14.Chen HC, Lin HC, Chen HH, et al. Innovative strategy with potential to increase hemodialysis efficiency and safety. Scientific reports 2014;4:4425.

15.Chen HC, Mai FD, Yang KH, Chen LY, Yang CP, Liu YC. Quantitative evaluation on activated property-tunable bulk liquid water with reduced hydrogen bonds using deconvoluted Raman spectroscopy. Anal Chem 2015;87:808-15.

16.Gabriel U, Bolenz C, Michel MS. Experimental models for therapeutic studies of transitional cell carcinoma. Anticancer research 2007;27:3163-71.

17.Zhang N, Li D, Shao J, Wang X. Animal models for bladder cancer: The model establishment and evaluation (Review). Oncol Lett 2015;9:1515-9.

18.Kim SJ, Seo HK, Seo HH, et al. Establishment of an orthotopic mouse non-muscle invasive bladder cancer model expressing the mammalian target of rapamycin signaling pathway. Journal of Korean medical science 2014;29:343-50.

19.Wang H, Satoh M, Abe H, et al. Oncolytic viral therapy by bladder instillation using an E1A, E1B double-restricted adenovirus in an orthotopic bladder cancer model. Urology 2006;68:674-81.

20.Chan E, Patel A, Heston W, Larchian W. Mouse orthotopic models for bladder cancer research. BJU international 2009;104:1286-91.

21.Lodillinsky C, Rodriguez V, Vauthay L, Sandes E, Casabe A, Eijan AM. Novel invasive orthotopic bladder cancer model with high cathepsin B activity resembling human bladder cancer. The Journal of urology 2009;182:749-55.

22.Ahmad I, Sansom OJ, Leung HY. Exploring molecular genetics of bladder cancer: lessons learned from mouse models. Disease models & mechanisms 2012;5:323-32.

23.Bockholt NA, Knudson MJ, Henning JR, et al. Anti-interleukin-10R1 monoclonal antibody enhances bacillus Calmette-Guerin induced T-helper type 1 immune responses and antitumor immunity in a mouse orthotopic model of bladder cancer. The Journal of urology 2012;187:2228-35.

24.Yang XH, Ren LS, Wang GP, et al. A new method of establishing orthotopic bladder transplantable tumor in mice. Cancer biology & medicine 2012;9:261-5.

25.Xu C, Xu W, Ren S, et al. Establishment of a Chinese bladder cancer cell line (T921) with high metastatic activity. In vitro cellular & developmental biology Animal 2013;49:668-78.

26.Wang H, Cai Z, Yang F, et al. Enhanced antitumor efficacy of integrin-targeted oncolytic adenovirus AxdAdB3-F/RGD on bladder cancer. Urology 2014;83:508 e13-9.

27.Zhang H, Chin AI. Role of Rip2 in development of tumor-infiltrating MDSCs and bladder cancer metastasis. PloS one 2014;9:e94793.

28.Huang P, Ma C, Xu P, Guo K, Xu A, Liu C. Efficacy of intravesical Bacillus Calmette-Guerin therapy against tumor immune escape in an orthotopic model of bladder cancer. Experimental and therapeutic medicine 2015;9:162-6.

29.Kasman L, Voelkel-Johnson C. An orthotopic bladder cancer model for gene delivery studies. J Vis Exp 2013:50181.

30.Dobek GL, Godbey WT. An orthotopic model of murine bladder cancer. J Vis Exp 2011.

31.Wu KY, Wang HZ, Hong SJ. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol Vis 2008;14:1705-12.

32.Arcan GÖ. Effects of epirubicin and daunorubicin on cell proliferation and cell death in HeLa cells. journal of cell and molecular biology 2005.

33.JCRB Cell Bank. at https://cellbank.nibio.go.jp/~cellbank/cgi-bin/search_res_det.cgi?ID=1788.)

34.陳欣怡、黃效民. 動物細胞的冷凍保存. 翻譯自:ATCC connection 2004;24:10-1.

35.Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008;79:598-601.

36.Lee JS, Bae MH, Choi SH, et al. Tumor establishment features of orthotopic murine bladder cancer models. Korean journal of urology 2012;53:396-400.

37.Sievert KD, Amend B, Nagele U, et al. Economic aspects of bladder cancer: what are the benefits and costs? World J Urol 2009;27:295-300.

38.Chen CH, Dickman KG, Huang CY, et al. Aristolochic acid-induced upper tract urothelial carcinoma in Taiwan: clinical characteristics and outcomes. International journal of cancer Journal international du cancer 2013;133:14-20.

39.Chen CH, Dickman KG, Moriya M, et al. Aristolochic acid-associated urothelial cancer in Taiwan. Proceedings of the National Academy of Sciences of the United States of America 2012;109:8241-6.

40.Lai MN, Wang SM, Chen PC, Chen YY, Wang JD. Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk. Journal of the National Cancer Institute 2010;102:179-86.

41.Hsieh SC, Lin IH, Tseng WL, Lee CH, Wang JD. Prescription profile of potentially aristolochic acid containing Chinese herbal products: an analysis of National Health Insurance data in Taiwan between 1997 and 2003. Chinese medicine 2008;3:13.

42.Nishikawa T, Kohjimoto Y, Nishihata M, Ebisuno S, Hara I. Synergistic antitumor effects of fleroxacin with 5-fluorouracil in vitro and in vivo for bladder cancer cell lines. Urology 2009;74:1370-6.

43.Ost MC, Patel KP, Rastinehad AR, et al. Pneumoperitoneum with carbon dioxide inhibits macrophage tumor necrosis factor-alpha secretion: source of transitional-cell carcinoma port-site metastasis, with prophylactic irrigation strategies to decrease laparoscopic oncologic risks. J Endourol 2008;22:105-12.

44.Zhou JR, Mukherjee P, Gugger ET, Tanaka T, Blackburn GL, Clinton SK. Inhibition of murine bladder tumorigenesis by soy isoflavones via alterations in the cell cycle, apoptosis, and angiogenesis. Cancer research 1998;58:5231-8.

45.Horiguchi Y, Larchian WA, Kaplinsky R, Fair WR, Heston WD. Intravesical liposome-mediated interleukin-2 gene therapy in orthotopic murine bladder cancer model. Gene Ther 2000;7:844-51.

46.Meng E, Chang HY, Chang SY, Sun GH, Yu DS, Cha TL. Involvement of purinergic neurotransmission in ketamine induced bladder dysfunction. The Journal of urology 2011;186:1134-41.

47.Tachibana M. Studies on cellular adhesiveness in five different culture cell lines derived from carcinoma of the urinary bladder. Keio J Med 1982;31:127-48.

48.Jager W, Horiguchi Y, Shah J, et al. Hiding in plain view: genetic profiling reveals decades old cross contamination of bladder cancer cell line KU7 with HeLa. The Journal of urology 2013;190:1404-9.

49.Luo Y, Han R, Evanoff DP, Chen X. Interleukin-10 inhibits Mycobacterium bovis bacillus Calmette-Guerin (BCG)-induced macrophage cytotoxicity against bladder cancer cells. Clin Exp Immunol 2010;160:359-68.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔