|
1.Philip, A.T. and B. Gerson, Lead poisoning--Part II. Effects and assay. Clin Lab Med, 1994. 14(3): p. 651-70. 2.Mostafa MH, H.S., Yousria AM, Seham MA, Amal SA, Amany MH, Effect of Alpha Lipoic Acid and Vitamin E on Heavy Metals Intoxication in Male Albino Rats. J Am Sci, 2010. 8(56-63). 3.El-Nekeety, A.A., et al., Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol, 2009. 47(9): p. 2209-15. 4.Sabath, E. and M.L. Robles-Osorio, Renal health and the environment: heavy metal nephrotoxicity. Nefrologia, 2012. 32(3): p. 279-86. 5.Rabinowitz, M.B., G.W. Wetherill, and J.D. Kopple, Kinetic analysis of lead metabolism in healthy humans. J Clin Invest, 1976. 58(2): p. 260-70. 6.Zhang, J., et al., Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol Lett, 2013. 218(3): p. 273-80. 7.Vaziri, N.D., Y. Ding, and Z. Ni, Nitric oxide synthase expression in the course of lead-induced hypertension. Hypertension, 1999. 34(4 Pt 1): p. 558-62. 8.Ehle, A.L. and D.C. McKee, Neuropsychological effect of lead in occupationally exposed workers: a critical review. Crit Rev Toxicol, 1990. 20(4): p. 237-55. 9.Bridges, C.C. and R.K. Zalups, Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol, 2005. 204(3): p. 274-308. 10.Dowd TL, R.J., Gundberg CM, Gupta RK, The displacement of calcium from osteocalcin at submicromolar concentrations of free lead. Biochimica et Biophysica Acta, 1994. 11.Fowler, B.A., Roles of lead-binding proteins in mediating lead bioavailability. Environ Health Perspect, 1998. 106 Suppl 6: p. 1585-7. 12.Fullmer, C.S., S. Edelstein, and R.H. Wasserman, Lead-binding properties of intestinal calcium-binding proteins. J Biol Chem, 1985. 260(11): p. 6816-9. 13.Goyer, R.A., Toxic and essential metal interactions. Annu Rev Nutr, 1997. 17: p. 37-50. 14.Forsen, S., E. Thulin, and H. Lilja, 113Cd NMR in the study of calcium binding proteins: troponin C. FEBS Lett, 1979. 104(1): p. 123-6. 15.Mills JS, J.J., Metal ions as allosteric regulators of calmodulin. J Biol Chem, 1985. 260(28): p. 15100-15. 16.Pidcock, E. and G.R. Moore, Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem, 2001. 6(5-6): p. 479-89. 17.Wang, C.L., P.C. Leavis, and J. Gergely, Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. Biochemistry (Mosc), 1984. 23(26): p. 6410-5. 18.Yang, W., et al., Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc, 2005. 127(7): p. 2085-93. 19.Long, G.J., J.F. Rosen, and F.A. Schanne, Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. J Biol Chem, 1994. 269(2): p. 834-7. 20.Markovac, J. and G.W. Goldstein, Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 1988. 334(6177): p. 71-3. 21.Cox, J.L. and S.D. Harrison, Jr., Correlation of metal toxicity with in vitro calmodulin inhibition. Biochem Biophys Res Commun, 1983. 115(1): p. 106-11. 22.PL, G., Lead-protein interactions as a basis for lead toxicity. Neurotoxicology., 1993. 14(2-3): p. 45-60. 23.H, N., Lead poisoning. Annu Rev Med, 2004(55): p. 209-222. 24.Patrick, L., Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev, 2006. 11(1): p. 2-22. 25.Flora, S.J., M. Mittal, and A. Mehta, Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res, 2008. 128(4): p. 501-23. 26.Wang, L., et al., Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol, 2009. 83(5): p. 417-27. 27.Reyes, J.L., et al., Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res Int, 2013. 2013: p. 730789. 28.Kumawat, K.L., et al., Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. Neurotoxicology, 2014. 41: p. 143-53. 29.Shui, S., et al., Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp Biol Med (Maywood), 2015. 30.Tsutsui, H., S. Kinugawa, and S. Matsushima, Oxidative stress and mitochondrial DNA damage in heart failure. Circ J, 2008. 72 Suppl A: p. A31-7. 31.Tei, C., et al., Waon therapy improves peripheral arterial disease. J Am Coll Cardiol, 2007. 50(22): p. 2169-71. 32.Fujita, S., et al., Effect of Waon therapy on oxidative stress in chronic heart failure. Circ J, 2011. 75(2): p. 348-56. 33.Lin, C.C., et al., Effect of far infrared therapy on arteriovenous fistula maturation: an open-label randomized controlled trial. Am J Kidney Dis, 2013. 62(2): p. 304-11. 34.Lin, C.C., et al., Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol, 2008. 28(4): p. 739-45. 35.Ting-Kai Leung , Y.-C.L., Chien-Ho Chen, Hsieh Nien-Fang,Kun-Cho Chen ,Chi-Ming Lee In Vitro Cell Study of Possible Anti-inflammatory and Pain Relief Mechanism of Far-infrared Ray-emitting Ceramic Material Journal of Medical and Biological Engineering, 2011. 33(2): p. 179-184. 36.Pang, X.-f., Vibrational Energy-spectra of Protein Molecules and Non-thermally Biological Effect of Infrared Light. International Journal of Infrared and Millimeter Waves, 2001. 22(2). 37.W, H., Experiments on the refrangibility of the in-visible rays of the Sun. Phil. Trans. Roy. Soc., 1800(90): p. 284. 38.Y, H., Effects of far infrared ray on Hela cells and WI-38 cells. International Congress Series, 2003. 1255: p. 339-341. 39.Pang Xiao-feng, Z.A.-y., Mechanism and Properties of Non-Thermally Biological Effect of the Millimeter Waves. International Journal of Infrared and Millimeter Waves, 2004. 25(3): p. 531-552. 40.Crinnion, W.J., Sauna as a Valuable Clinical Tool for Cardiovascular, Autoimmune, Toxicantinduced and other Chronic Health Problems. Journal of Medical and Biological Engineering, 2010. 31(5): p. 345-351. 41.David C. Hohnadel, Maria W. Nechay, and Michael D. McNeely, Atomic Absorption Spectrometry of Nickel, Copper, Zinc, and Lead in Sweat Collected from Healthy Subjects during Sauna Bathing. CLINICAL CHEMISTRY, 1973. 19(11): p. 1288-1292. 42.Sunderman, F.W., Jr., et al., Excretion of copper in sweat of patients with Wilson''s disease during sauna bathing. Ann Clin Lab Sci, 1974. 4(5): p. 407-12. 43.F.O. Omokhodion, G.W.C., Lead in sweat and its relationship to salivary and urinary levels in normal healthy subjects. Science of The Total Environment, 1991. 103(2-3): p. 113-122. 44.張崇暐, 紅外線的原理與應用.[Online], 2007 45.Toyokawa H, M.Y., Uhara J, Tsuchiya H, Teshima S, Nakanishi H, Kwon AH, Azuma Y, Nagaoka T, Ogawa T, Kamiyama Y., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood), 2003. 228(6): p. 724-729. 46.Kerper LE, H.P., Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem, 1997. 272(13): p. 8346-8352. 47.Ronis MJ, B.T., Shema SJ, Roberson PK, Shaikh F., Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol., 1996. 136(2): p. 361-71. 48.Georgescu, B., et al., Heavy Metals Acting as Endocrine Disrupters Animal Science and Biotechnologies, 2011. 44(2). 49.Kim, M.S., et al., Regulation of type I procollagen and MMP-1 expression after single or repeated exposure to infrared radiation in human skin. Mech Ageing Dev, 2006. 127(12): p. 875-82. 50.Praveen R. Arany, M.R.S.N., MDS; Seema Hallikerimath, MDS; Anil M. Limaye, PhD;Alka D. Kale, MDS; Paturu Kondaiah, PhD, Activa tion of latent TGF-b1 by low-power laser in vitrocorrelates with increased TGF-b1 levels in laser-enhancedoral wound healing. Wound Repair and Regeneration, 2007. 15(6): p. 866-874. 51.Bokkon, I., et al., Phantom pain reduction by low-frequency and low-intensity electromagnetic fields. Electromagn Biol Med, 2011. 30(3): p. 115-27. 52.Ting-Kai Leung , Y.-C.L., Chien-Ho Chen , Hsieh Nien-Fang, Kun-Cho Chen , Chi-Ming Lee, In Vitro Cell Study of Possible Anti-inflammatory and Pain Relief Mechanism of Far-infrared Ray-emitting Ceramic Material. Journal of Medical and Biological Engineering, 2013. 33(2): p. 179-184. 53.Li, K.-H.H.a.W.-T., Phototherapy for the Treatment of Allergic Rhinitis Allergic Rhinitis, 2013: p. 214. 54.Leung, T.K., et al., Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin J Physiol, 2012. 55(5): p. 323-30. 55.Hwang, S., Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels. Cancer Letters, 2014. 346: p. 74-83. 56.Lohr, N.L., et al., Far red/near infrared light treatment promotes femoral artery collateralization in the ischemic hindlimb. J Mol Cell Cardiol, 2013. 62: p. 36-42. 57.Ishibashi, J., et al., The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol, 2008. 25(2): p. 229-37. 58.Bogden, J.D., et al., Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J Nutr, 1992. 122(7): p. 1351-60. 59.Mahaffey, K.R., P.S. Gartside, and C.J. Glueck, Blood lead levels and dietary calcium intake in 1- to 11-year-old children: the Second National Health and Nutrition Examination Survey, 1976 to 1980. Pediatrics, 1986. 78(2): p. 257-62. 60.Chang, Y.-F., Orai1-STIM1 formed store-operated Ca2+channels (SOCs) as the molecularcomponents needed for Pb2+entry in living cells. Toxicology and Applied Pharmacology, 2008. 227(430-439). 61.Jung-Hyun Park , S.L., Du-Hyong Cho , Young Mi Park , Duk-Hee Kang , Inho Jo Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179 Biochemical and Biophysical Research Communications 2013. 436: p. 601-606.
|