(3.235.11.178) 您好!臺灣時間:2021/02/26 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯沁夢
研究生(外文):Cin-Meng Ko
論文名稱:探討遠紅外線對鉛毒性的影響
論文名稱(外文):The effect of far-infrared treatment in lead poisoning
指導教授:沈芯伃
指導教授(外文):Shing-Chuan Shen
口試委員:王家儀梁庭繼
口試委員(外文):Jia-Yi WangTing-Kai Leung
口試日期:2015-07-15
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:47
中文關鍵詞:遠紅外線;鉛毒性;氧化壓力;腎臟損傷
外文關鍵詞:Far-infraredlead toxicityR.O.S.kidney injury
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鉛蓄積於人體會誘發氧化性壓力,造成嚴重的發炎反應,導致許多組織與器官受損,進而影響生物體正常的生長發育,嚴重甚至可能導致死亡。鉛中毒的臨床治療,目前主要使用熬合劑或洗胃來清除循環與消化系統中殘餘的鉛,但這些治療方式無法有效的降低蓄積於組織或器官中的鉛。過去文獻指出遠紅外線(非一般的三溫暖或運動),可促進鉛經由汗液排出,遠紅外線因此被認為可能有助於加速鉛的排除,或許在治療及預防鉛中毒方面可以發揮作用。本篇論文利用特定波長(9~14μm)之遠紅外線照射皮膚角質細胞( HaCaT ),在未通電且沒有明顯溫度變化的情況下,證實遠紅外線確實可以加速傷口癒合。細胞實驗中我們發現,鉛會誘導細胞內的氧化性壓力(R.O.S.)上升導致腎臟細胞死亡,而遠紅外線處理組,細胞內鉛含量與氧化性壓力相對較低。在動物實驗中,老鼠持續飲用鉛水(3g/500ml)七週,之後將之分為兩組,一組不做任何處理(鉛單獨處理組),另一組則定時給予遠紅外線照射,量測老鼠血液及尿液中鉛濃度後發現,鉛單獨處理組血中鉛濃度(71μg/ml)明顯高於遠紅外線治療組(30μg/ml)。此外,鉛所造成的老鼠體重減輕與腎絲球病變,在遠紅外線治療組明顯比鉛單獨處理組少。我們的研究結果顯示遠紅外線或許可以透過加速鉛代謝,降低鉛的蓄積與所誘導的氧化性壓力,降低鉛對腎臟造成的傷害。
Lead, once accumulated in the body, can cause oxidative stress, leading to severe inflammation, organ injury, inhibition of growth development, and even death. Presently, clinical treatments, including both gastrointestinal decontamination and chelation therapy, cannot effectively reduce lead accumulation in tissues or organs. As previous studies showed that far-infrared (FIR) exposure removed a significant amount of lead from the body through sweat excretion, therefore, we investigated whether FIR had a beneficial effect on the treatment of lead toxicity. To examine the effect, pure FIR ceramic semiconductor (c-FIR), ranged from 9 to 14 μm, was adopted in this study. Previous studies showed that FIR promoted cell migration and stimulated cell proliferation, our studies using wound-healing assays in keratinocytes (HaCaT) show that c-FIR produces similar results without thermal effects. Using renal cells as in vitro model, our results show that, in comparison to controls, c-FIR markedly reduced ROS production and its consequent cell death. In vivo studies were conducted with two groups of rats fed with drinking water containing lead for 7 weeks, with or without FIR-cotreatment, and the concentration of Pb in blood and urine were determined. Blood concentrations of Pb in rats that were exposed to Pb with co-application of FIR were significantly lower (30μg/ml) than those without FIR exposure (71μg/ml). Moreover, the weight loss and glomerulosclerosis caused by Pb consumption were significantly reduced in the FIR-treated group. We also find that FIR can accelerate the metabolism of lead in rats. Overall, our data supports the notion that FIR may provide a novel therapeutic avenue for the treatment of lead toxicity.
目錄............ 1
縮寫表.......... 5
中文摘要........ 7
英文摘要........ 8
第壹章、 緒論.... 9
第一節 過去的研究....... 9
第二節 研究目標.......... 14
第貳章、 實驗材料與方法... 15
第一節 實驗材料........ 15
(一) 一般藥品試劑........ 15
(二) 遠紅外線陶瓷半導體與照射器.... 16
(三) 一般儀器............ 16
(四) 一般溶液之配置...... 17
(五) 細胞株............. 17
(六) 試驗動物........... 17
第二節 實驗方法........ 18
(一) 遠紅外線陶瓷半導體發射光譜分析........ 18
(二) 溫度測量............ 18
(三) 細胞解凍.... ........18
(四) 細胞培養............ 19
(五) 細胞冷凍............ 19
(六) 細胞計數............ 20
(七) 傷口癒合實驗( Wound healing assay).. 20
(八) 細胞存活率偵測分析( MTT assay)....... 20
(九) 偵測鉛濃度.......................... 21
(十) 測量自由基( Free radical)含量....... 21
(十一) 動物實驗.......................... 21
(十二) 組織切片染色( H&E stain).......... 22
(十三) 統計分析.. ........................22
第參章、 實驗結果........................ 23
第一節 遠紅外線陶瓷半導體發射光譜表現....... 23
第二節 遠紅外線陶瓷半導體對細胞培養環境溫度之影響 ........................................23
第三節 遠紅外線促進皮膚角質細胞傷口癒合及增生....... 24
第四節 鉛蓄積造成腎小管細胞( NRK52E)之毒性. 24
第五節 遠紅外線降低腎小管細胞內鉛蓄積的濃度. 26
第六節 遠紅外線降低鉛誘導腎小管細胞產生之氧化性壓
力...................................... 26
第七節 遠紅外線改善鉛毒性造成的生長抑制..... 27
第八節 遠紅外線降低血中鉛濃度並提升腎臟代謝能力 ........................................27
第九節 遠紅外線加速鉛的排出....... 28
第十節 遠紅外線保護鉛誘導之腎臟損傷........ 29
第肆章、 討論............................ 30
第伍章、 結論............................ 32
參考文獻................................ 33
實驗結果圖表..... ........................37
圖一. 遠紅外線陶瓷半導體發射光譜........... 37
圖二. 遠紅外線對細胞培養環境溫度的影響...... 38
圖三. 遠紅外線促進皮膚角質細胞傷口癒合及增生 39
圖四. 鉛蓄積造成腎小管細胞( NRK52E)之毒性.. 40
圖五. 遠紅外線降低腎小管細胞( NRK52E)內鉛蓄積的
濃度.................................... 42
圖六. 遠紅外線降低鉛誘導腎小管細胞產生之氧化性壓
力...................................... 43
圖七. 遠紅外線改善鉛毒性造成的生長抑制...... 44
圖八. 遠紅外線降低血中鉛濃度並提升腎臟代謝能力...... 45
圖九. 遠紅外線加速鉛的排出................ 46
圖十. 遠紅外線保護鉛誘導之腎臟損傷......... 47
1.Philip, A.T. and B. Gerson, Lead poisoning--Part II. Effects and assay. Clin Lab Med, 1994. 14(3): p. 651-70.
2.Mostafa MH, H.S., Yousria AM, Seham MA, Amal SA, Amany MH, Effect of Alpha Lipoic Acid and Vitamin E on Heavy Metals Intoxication in Male Albino Rats. J Am Sci, 2010. 8(56-63).
3.El-Nekeety, A.A., et al., Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol, 2009. 47(9): p. 2209-15.
4.Sabath, E. and M.L. Robles-Osorio, Renal health and the environment: heavy metal nephrotoxicity. Nefrologia, 2012. 32(3): p. 279-86.
5.Rabinowitz, M.B., G.W. Wetherill, and J.D. Kopple, Kinetic analysis of lead metabolism in healthy humans. J Clin Invest, 1976. 58(2): p. 260-70.
6.Zhang, J., et al., Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol Lett, 2013. 218(3): p. 273-80.
7.Vaziri, N.D., Y. Ding, and Z. Ni, Nitric oxide synthase expression in the course of lead-induced hypertension. Hypertension, 1999. 34(4 Pt 1): p. 558-62.
8.Ehle, A.L. and D.C. McKee, Neuropsychological effect of lead in occupationally exposed workers: a critical review. Crit Rev Toxicol, 1990. 20(4): p. 237-55.
9.Bridges, C.C. and R.K. Zalups, Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol, 2005. 204(3): p. 274-308.
10.Dowd TL, R.J., Gundberg CM, Gupta RK, The displacement of calcium from osteocalcin at submicromolar concentrations of free lead. Biochimica et Biophysica Acta, 1994.
11.Fowler, B.A., Roles of lead-binding proteins in mediating lead bioavailability. Environ Health Perspect, 1998. 106 Suppl 6: p. 1585-7.
12.Fullmer, C.S., S. Edelstein, and R.H. Wasserman, Lead-binding properties of intestinal calcium-binding proteins. J Biol Chem, 1985. 260(11): p. 6816-9.
13.Goyer, R.A., Toxic and essential metal interactions. Annu Rev Nutr, 1997. 17: p. 37-50.
14.Forsen, S., E. Thulin, and H. Lilja, 113Cd NMR in the study of calcium binding proteins: troponin C. FEBS Lett, 1979. 104(1): p. 123-6.
15.Mills JS, J.J., Metal ions as allosteric regulators of calmodulin. J Biol Chem, 1985. 260(28): p. 15100-15.
16.Pidcock, E. and G.R. Moore, Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem, 2001. 6(5-6): p. 479-89.
17.Wang, C.L., P.C. Leavis, and J. Gergely, Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin. Biochemistry (Mosc), 1984. 23(26): p. 6410-5.
18.Yang, W., et al., Design of a calcium-binding protein with desired structure in a cell adhesion molecule. J Am Chem Soc, 2005. 127(7): p. 2085-93.
19.Long, G.J., J.F. Rosen, and F.A. Schanne, Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. J Biol Chem, 1994. 269(2): p. 834-7.
20.Markovac, J. and G.W. Goldstein, Picomolar concentrations of lead stimulate brain protein kinase C. Nature, 1988. 334(6177): p. 71-3.
21.Cox, J.L. and S.D. Harrison, Jr., Correlation of metal toxicity with in vitro calmodulin inhibition. Biochem Biophys Res Commun, 1983. 115(1): p. 106-11.
22.PL, G., Lead-protein interactions as a basis for lead toxicity. Neurotoxicology., 1993. 14(2-3): p. 45-60.
23.H, N., Lead poisoning. Annu Rev Med, 2004(55): p. 209-222.
24.Patrick, L., Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev, 2006. 11(1): p. 2-22.
25.Flora, S.J., M. Mittal, and A. Mehta, Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res, 2008. 128(4): p. 501-23.
26.Wang, L., et al., Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol, 2009. 83(5): p. 417-27.
27.Reyes, J.L., et al., Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res Int, 2013. 2013: p. 730789.
28.Kumawat, K.L., et al., Acute exposure to lead acetate activates microglia and induces subsequent bystander neuronal death via caspase-3 activation. Neurotoxicology, 2014. 41: p. 143-53.
29.Shui, S., et al., Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp Biol Med (Maywood), 2015.
30.Tsutsui, H., S. Kinugawa, and S. Matsushima, Oxidative stress and mitochondrial DNA damage in heart failure. Circ J, 2008. 72 Suppl A: p. A31-7.
31.Tei, C., et al., Waon therapy improves peripheral arterial disease. J Am Coll Cardiol, 2007. 50(22): p. 2169-71.
32.Fujita, S., et al., Effect of Waon therapy on oxidative stress in chronic heart failure. Circ J, 2011. 75(2): p. 348-56.
33.Lin, C.C., et al., Effect of far infrared therapy on arteriovenous fistula maturation: an open-label randomized controlled trial. Am J Kidney Dis, 2013. 62(2): p. 304-11.
34.Lin, C.C., et al., Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol, 2008. 28(4): p. 739-45.
35.Ting-Kai Leung , Y.-C.L., Chien-Ho Chen, Hsieh Nien-Fang,Kun-Cho Chen ,Chi-Ming Lee In Vitro Cell Study of Possible Anti-inflammatory and Pain Relief Mechanism of Far-infrared Ray-emitting Ceramic Material Journal of Medical and Biological Engineering, 2011. 33(2): p. 179-184.
36.Pang, X.-f., Vibrational Energy-spectra of Protein Molecules and Non-thermally Biological Effect of Infrared Light. International Journal of Infrared and Millimeter Waves, 2001. 22(2).
37.W, H., Experiments on the refrangibility of the in-visible rays of the Sun. Phil. Trans. Roy. Soc., 1800(90): p. 284.
38.Y, H., Effects of far infrared ray on Hela cells and WI-38 cells. International Congress Series, 2003. 1255: p. 339-341.
39.Pang Xiao-feng, Z.A.-y., Mechanism and Properties of Non-Thermally Biological Effect of the Millimeter Waves. International Journal of Infrared and Millimeter Waves, 2004. 25(3): p. 531-552.
40.Crinnion, W.J., Sauna as a Valuable Clinical Tool for Cardiovascular, Autoimmune, Toxicantinduced and other Chronic Health Problems. Journal of Medical and Biological Engineering, 2010. 31(5): p. 345-351.
41.David C. Hohnadel, Maria W. Nechay, and Michael D. McNeely, Atomic Absorption Spectrometry of Nickel, Copper, Zinc, and Lead in Sweat Collected from Healthy Subjects during Sauna Bathing. CLINICAL CHEMISTRY, 1973. 19(11): p. 1288-1292.
42.Sunderman, F.W., Jr., et al., Excretion of copper in sweat of patients with Wilson''s disease during sauna bathing. Ann Clin Lab Sci, 1974. 4(5): p. 407-12.
43.F.O. Omokhodion, G.W.C., Lead in sweat and its relationship to salivary and urinary levels in normal healthy subjects. Science of The Total Environment, 1991. 103(2-3): p. 113-122.
44.張崇暐, 紅外線的原理與應用.[Online], 2007
45.Toyokawa H, M.Y., Uhara J, Tsuchiya H, Teshima S, Nakanishi H, Kwon AH, Azuma Y, Nagaoka T, Ogawa T, Kamiyama Y., Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood), 2003. 228(6): p. 724-729.
46.Kerper LE, H.P., Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem, 1997. 272(13): p. 8346-8352.
47.Ronis MJ, B.T., Shema SJ, Roberson PK, Shaikh F., Reproductive toxicity and growth effects in rats exposed to lead at different periods during development. Toxicol Appl Pharmacol., 1996. 136(2): p. 361-71.
48.Georgescu, B., et al., Heavy Metals Acting as Endocrine Disrupters Animal Science and Biotechnologies, 2011. 44(2).
49.Kim, M.S., et al., Regulation of type I procollagen and MMP-1 expression after single or repeated exposure to infrared radiation in human skin. Mech Ageing Dev, 2006. 127(12): p. 875-82.
50.Praveen R. Arany, M.R.S.N., MDS; Seema Hallikerimath, MDS; Anil M. Limaye, PhD;Alka D. Kale, MDS; Paturu Kondaiah, PhD, Activa tion of latent TGF-b1 by low-power laser in vitrocorrelates with increased TGF-b1 levels in laser-enhancedoral wound healing. Wound Repair and Regeneration, 2007. 15(6): p. 866-874.
51.Bokkon, I., et al., Phantom pain reduction by low-frequency and low-intensity electromagnetic fields. Electromagn Biol Med, 2011. 30(3): p. 115-27.
52.Ting-Kai Leung , Y.-C.L., Chien-Ho Chen , Hsieh Nien-Fang, Kun-Cho Chen , Chi-Ming Lee, In Vitro Cell Study of Possible Anti-inflammatory and Pain Relief Mechanism of Far-infrared Ray-emitting Ceramic Material. Journal of Medical and Biological Engineering, 2013. 33(2): p. 179-184.
53.Li, K.-H.H.a.W.-T., Phototherapy for the Treatment of Allergic Rhinitis Allergic Rhinitis, 2013: p. 214.
54.Leung, T.K., et al., Effects of far infrared rays irradiated from ceramic material (BIOCERAMIC) on psychological stress-conditioned elevated heart rate, blood pressure, and oxidative stress-suppressed cardiac contractility. Chin J Physiol, 2012. 55(5): p. 323-30.
55.Hwang, S., Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels. Cancer Letters, 2014. 346: p. 74-83.
56.Lohr, N.L., et al., Far red/near infrared light treatment promotes femoral artery collateralization in the ischemic hindlimb. J Mol Cell Cardiol, 2013. 62: p. 36-42.
57.Ishibashi, J., et al., The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A. Med Oncol, 2008. 25(2): p. 229-37.
58.Bogden, J.D., et al., Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. J Nutr, 1992. 122(7): p. 1351-60.
59.Mahaffey, K.R., P.S. Gartside, and C.J. Glueck, Blood lead levels and dietary calcium intake in 1- to 11-year-old children: the Second National Health and Nutrition Examination Survey, 1976 to 1980. Pediatrics, 1986. 78(2): p. 257-62.
60.Chang, Y.-F., Orai1-STIM1 formed store-operated Ca2+channels (SOCs) as the molecularcomponents needed for Pb2+entry in living cells. Toxicology and Applied Pharmacology, 2008. 227(430-439).
61.Jung-Hyun Park , S.L., Du-Hyong Cho , Young Mi Park , Duk-Hee Kang , Inho Jo Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179 Biochemical and Biophysical Research Communications 2013. 436: p. 601-606.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔